
Object Support in an
Array-based GPGPU Extension for Ruby

ARRAY ’16

Matthias Springer, Hidehiko Masuhara

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

June 14, 2016

Object Support in an Array-based GPGPU Extension for Ruby

Overview

Introduction

Example: Agent-based Traffic Simulation

Implementation and Optimizations

Preliminary Benchmarks

Future Work and Summary

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 2 / 25

Object Support in an Array-based GPGPU Extension for RubyI Introduction

What is Ikra?

Ik
ra

A Ruby-to-CUDA compiler . . .
• that allows programmers to use GPGPU easily
• with dynamic compilation
• supporting object-oriented programming and polymorphic expressions
• with a number of optimizations:
kernel fusion, job reordering, structure-of-arrays data layout

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 3 / 25

Object Support in an Array-based GPGPU Extension for RubyI Introduction

Related Work

• Related work
− Frameworks similar to Ikra: Accelerate, pyCUDA, . . .

Focus on high-level code generation/optimizations (kernel fusion,
subexpr. elimination, ...)

− Application-level Optimizations: Programming styles/best practices
E.g., techniques for reducing branch divergence (e.g., job reordering),
data layout optimizations (e.g., structure-of-arrays layout)

• Focus of this work
− Support object-oriented programming in GPGPU code
− Employ language-level optimizations to achieve good performance
− Implement low-level code optimizations

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 4 / 25

Object Support in an Array-based GPGPU Extension for RubyI Introduction

Parallel Sections

• peach, pmap, pnew, (pselect, preduce)
• One thread per base array element
• Input data: iterator variables, lexical variables, instances variables of
objects

• Output data: result of parallel section, changed objects (kernel code
can have side effects)

inc = 10 # lexical variable

[1, 2, 3].pmap do |v|
v + inc

end

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 5 / 25

Object Support in an Array-based GPGPU Extension for RubyI Example: Agent-based Traffic Simulation

Overview

Introduction

Example: Agent-based Traffic Simulation

Implementation and Optimizations

Preliminary Benchmarks

Future Work and Summary

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 6 / 25

Object Support in an Array-based GPGPU Extension for RubyI Example: Agent-based Traffic Simulation

Example: Agent-based Traffic Simulation
Problem Description [2]

• Simulate movement of agents (cars, etc.) on a street network
• Iteration-based, different behavior per type/class

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 7 / 25

Object Support in an Array-based GPGPU Extension for RubyI Example: Agent-based Traffic Simulation

Example: Agent-based Traffic Simulation
Problem Description [2]

5 second / 1 tick later ...

• Simulate movement of agents (cars, etc.) on a street network
• Iteration-based, different behavior per type/class

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 7 / 25

Object Support in an Array-based GPGPU Extension for RubyI Example: Agent-based Traffic Simulation

Example: Agent-based Traffic Simulation
Problem Description [2]

-@max_velocity

+move()

Car
+move()

Pedestrian

• Simulate movement of agents (cars, etc.) on a street network
• Iteration-based, different behavior per type/class

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 7 / 25

Object Support in an Array-based GPGPU Extension for RubyI Example: Agent-based Traffic Simulation

Iteration-based Simulation

agents = # load scenario from file system
ticks = 1000
weather = Weather::Rainy

agents.peach(ticks) do |agent|
agent.move(weather)

end

• One thread per agent
• Syntactical sugar (+synchronization)

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 8 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Overview

Introduction

Example: Agent-based Traffic Simulation

Implementation and Optimizations

Preliminary Benchmarks

Future Work and Summary

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 9 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Architecture: Compilation Process

Invocation of
Parallel Section

Type Inference
Infer types and read/written

information of inst. vars

Generate CUDA
Source Code

Compile Source
Code (nvcc)

Trace Reachable
Objects

Transfer Data
and Run Kernel

Object graph traversal,
Generate SoA layout

+

• Code analysis at runtime (dynamic compilation)
• Metaprogramming, reflection allowed outside of parallel sections, but
not inside them

• Support for object-oriented programming, Ruby classes, virtual
method calls, dynamically-typed expressions

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 10 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Translation Process

• Block → C++ CUDA function
• Instance method → C++ CUDA function
• Polymorphic expressions: union type struct [1]

typedef struct union_type
{

int object_id;
int class_id;

} union_t;

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 11 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Polymorphic Method Calls
__global__ void kernel(union_t *agent, int weather, int ticks)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
block(agent[tid], weather, ticks);

}

__device__ void block(union_t agent, int weather, int ticks)
{
for (int i = 0; i <= ticks; i++)
{
switch (agent.class_id) # determined during type inference
{
case TAG_Car:
method_Car_move(agent.id, weather); break;

case TAG_Pedestrian:
method_Pedestrian_move(agent.id, weather); break;

}
}

}

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 12 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Job Reordering (1/2)

Without Job Reordering:

C P C C C P P P
With Job Reordering:

C C C C P P P P

• Purpose: Avoid branch divergence (GPU is SIMD) [6]
• Mechanism: Reorder jobs according to runtime type information
• About 30% faster with job reordering

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 13 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Job Reordering (2/2)

__global__
void kernel(union_t *agent, int *jobs, int weather, int ticks)

{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
block(agent[jobs[tid]], weather, ticks);

}

__device__ void block(union_t agent, int weather, int ticks)
{
/* ... */

}

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 14 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Memory Coalescing

Coalesced Strided

• Memory Coalescing: Process multiple global memory access
requests in one transaction

• Requirement: Spatial locality of memory

Illustration: realazthat GitHub Gist (https://goo.gl/tjPTZr)

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 15 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Structure-of-Arrays Representation
Overview (c.f. Columnar Objects [3, 4])

Arrays of Structures (AoS):

object 1 object 2 object 3 object 4 object 5

Structure of Arrays (SoA):

• Purpose: Increase memory coalescing
• Mechanism: Spatial locality of instance variables (group inst. vars.)

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 16 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Structure-of-Arrays Representation
Type Inference and Generating Arrays: Object Tracer

1. Object Tracing: Generate set of objects reachable from base array
and lexical variables (only those that have Ikra::Entity included)

2. Inst. Var. Type Analysis: Collect types of all instance variables
3. Translation: Infer types and generate CUDA program
4. SoA Generation: Generate arrays for Structure-of-Arrays

representation
5. Kernel Invocation: Run kernel

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 17 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Kernel Fusion

MapCommand

SelectCommand

MapCommand

IdentityCommand

Array

command[5]
command.size
command.

execute

__device__ int block_1(int el) { return el; }
__device__ int block_2(int el) { return 2 * el; }
__device__ bool block_3(int el) { return el > 10; }
__device__ int block_4(int el) { return el + 1; }

__global__ void kernel(int *input, int *result, int *jobs) {
 int job = jobs[threadIdx.x + blockIdx.x * ...];
 int v2 = block_2(block_1(input[job]));
 if (block_3(v2)) result[job] = block_4(v2); } 1

2

3

4
@target

@target

@target

@target

• Purpose: Reduce global memory access for cascaded kernel operations
• Mechanism: Generate single kernel for multiple parallel sections [5]

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 18 / 25

Object Support in an Array-based GPGPU Extension for RubyI Implementation and Optimizations

Kernel Fusion
Examples / Use Cases / Future Work

Embedded DSL for
Database Queries

SELECT state, COUNT(*)
FROM employees
WHERE age > 25
GROUP BY state

employees.pselect do |empl|
e.age > 25

end.preduce([:state]) do ←↩
|acc, empl|
acc + 1

end

Iteration-based
Simulations

agents = # load scenario
for i in 1..ticks
agents = agents.pmap do ←↩

|agent|
agent.move

end
end

Algorithmic Primitives
for Graph Algorithms

d_s1 = graph.dist_from(s1)
d_s2 = graph.dist_from(s2)
d_s1.join(d_s2) do |n1, n2|
n1.dist = n2.dist

end

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 19 / 25

Object Support in an Array-based GPGPU Extension for RubyIPreliminary Benchmarks

Overview

Introduction

Example: Agent-based Traffic Simulation

Implementation and Optimizations

Preliminary Benchmarks

Future Work and Summary

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 20 / 25

Object Support in an Array-based GPGPU Extension for RubyIPreliminary Benchmarks

Kernel Running Time

Setting: nVidia Tesla K20Xm, Ruby 1.9.3p448, Linux 3.0.76-0.11
Scenario: 4,096 cars, 16,384 pedestrians, 500 streets, 1,000,000 iterations

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 21 / 25

Object Support in an Array-based GPGPU Extension for RubyIPreliminary Benchmarks

Job Reordering

Setting: Intel Xeon X5670 CPU (2.93 GHz), Ruby 1.9.3p448, Linux 3.0.76-0.11

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 22 / 25

Object Support in an Array-based GPGPU Extension for RubyIPreliminary Benchmarks

Object Tracing and SoA Generation

Setting: Intel Xeon X5670 CPU (2.93 GHz), Ruby 1.9.3p448, Linux 3.0.76-0.11

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 23 / 25

Object Support in an Array-based GPGPU Extension for RubyI Future Work and Summary

Overview

Introduction

Example: Agent-based Traffic Simulation

Implementation and Optimizations

Preliminary Benchmarks

Future Work and Summary

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 24 / 25

Object Support in an Array-based GPGPU Extension for RubyI Future Work and Summary

Ideas for Future Work

• Full support for object-oriented programming: instance creation, etc.
• Job reordering: take into account run-time types of expressions inside
the kernel (and reorder after a while)

• Synchronization primitives: block-level, global
• Minimizing data transfers: allocate data only in global memory
• More low-level optimizations: e.g., code unrolling for ILP

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 25 / 25

Object Support in an Array-based GPGPU Extension for RubyI Future Work and Summary

Summary

• Ikra: A GPGPU framework for Ruby
• Supports object-oriented programming including virtual method
calls and dynamically-typed expressions

• Employs low-level optimizations: job reordering, structure-of-arrays
data layout, kernel fusion

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 26 / 25

Object Support in an Array-based GPGPU Extension for RubyI Future Work and Summary

References

[1] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin. Dynamic Typing in a
Statically-Typed Language. POPL ’89

[2] D. Helbing. Social Self-Organization: Agent-Based Simulations and
Experiments to Study Emergent Social Behavior, chapter Agent-Based
Modeling

[3] T. Mattis, J. Henning, P. Rein, R. Hirschfeld, M. Appeltauer.
Columnar objects: Improving the Performance of Analytical
Applications. Onward! 2015

[4] G. Mei, H. Tian. Impact of Data Layouts on the Efficiency of
GPU-accelerated IDW Interpolation. SpringerPlus, 2016

[5] M. Wahib, N. Maruyama. Scalable Kernel Fusion for Memory-bound
GPU Applications. SC ’14

[6] E. Z. Zhang, Y. Jiang, Z. Guo, X. Shen. Streamlining GPU
Applications on the Fly: Thread Divergence Elimination through
Runtime Thread-Data Remapping. ICS ’10

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 27 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Appendix

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 28 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Example: Agent-based Traffic Simulation
Graph Representation

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 29 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Example: Agent-based Traffic Simulation
UML Class Diagram

-@progress
-@street

Agent

-@max_velocity

+move()

Car

+move()

Pedestrian ...

-@length
-@max_velocity
-@neighbors

Street
1 1..*

• Car moves with velocity min(S .max_velocity ,C .max_velocity)
• Pedestrian moves with random velocity between -2 mph and 4 mph
• Agent moves to random neighboring street when reaching end of street

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 30 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Iteration-based Simulation (1/3)

First approach: Parallel inner section

agents = # load scenario from file system
ticks = 1000
weather = Weather::Rainy

for i in 1..ticks
agents.peach do |agent|

agent.move(weather)
end

end

• One thread per agent
• Problem: Separate kernel launches for every iteration

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 31 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Iteration-based Simulation (2/3)

Second approach: Parallel outer section with loop inversion

agents = # load scenario from file system
ticks = 1000
weather = Weather::Rainy

agents.peach do |agent|
for i in 1..ticks

agent.move(weather)
add synchronization here

end
end

• One thread per agent

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 32 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Iteration-based Simulation (3/3)

Third approach: Syntactical sugar

agents = # load scenario from file system
ticks = 1000
weather = Weather::Rainy

agents.peach(ticks) do |agent|
agent.move(weather)

end

• One thread per agent
• Syntactical sugar for previous example (+synchronization)

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 33 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Job Reordering

C P P B C P C P P C C C

warp 1 warp 2 warp 3

C C C C C C P P P P P B

warp 1 warp 2 warp 3 warp 4 warp 5

0 4 6 9 10 11 1 2 5 7 8 3

reorder

base array:

job reordering array:

resulting job order

• Purpose: Avoid branch divergence (GPU is SIMD) [6]
• Mechanism: Reorder jobs according to runtime type information

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 34 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Structure-of-Arrays Representation
Code Example

__device__ float *d_Car_max_velocity;
__device__ float *d_Car_progress;
/* ... */

__device__ void method_Car_move(int agent_id, int weather)
{
/* ... */

// Due to SIMD, all threads execute this simultaneously:
d_Car_progress[agent_id] += speed / 60.0;

/* ... */
}

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 35 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Structure-of-Arrays Representation
Arrays

5
10
9

65
65
45

0
3
9

3
1
2

1
2
5
2

1
3

@length
@max_
velocity @neighbors

Class: Street Class: Array<Street>

1
2
3

1
2
3

2
3
1

(ID) (ID) size offset arrays

(RLE tuple)

• Basic Idea: Treat arrays like other classes, but distinguish between
inner types

• Implementation: Store size and offset into contents array as if they
were instance variables

• Future Work: Allow arrays to grow

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 36 / 25

Object Support in an Array-based GPGPU Extension for RubyIAppendix

Structure-of-Arrays Representation
SoA Generation (c.f. system tracer in Smalltalk systems)

arr[1]
arr[2]
arr[3]
arr[4]
arr[5]

env1
env2

1
2 3

4

5
6

7

class A
1
7
2

class B
3
4
5

...
1
2
3

1
2
3

roots (array, lex. vars.)

object ID

Result of step 2

• Pointers of object references must be replaced with array indices

1. Assign IDs to objects (grouped by class), build hash map object → ID
2. Build arrays, replace object references with IDs (or union type tuple)

ARRAY ’16 Tokyo Institute of Technology June 14, 2016 37 / 25

	Introduction
	Example: Agent-based Traffic Simulation
	Implementation and Optimizations
	Preliminary Benchmarks
	Future Work and Summary

