
ContextAmber
A COP implementation for Amber Smalltalk

Seminar Context-oriented Programming, WS2014/15

Matthias Springer

Hasso Plattner Institute, Software Architecture Group

January 13, 2015

ContextAmber

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber

Demonstration

Project Status

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 2 / 38

ContextAmberI Introduction

Introduction

• Context-oriented Programming: modularize heterogeneous
crosscutting concerns

• Layers, partial methods, dynamic layer activation at runtime
• ContextAmber: a COP implementation for Amber Smalltalk
(Smalltalk runtime environment in the web browser)

• Challenge: make it fast by inlining partial methods (with object-wise
layer activation!)

• Use case: Debug output for Athens vector graphics library

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 3 / 38

ContextAmberI Introduction

Related Projects

• ContextJS [2]: COP implementation for JavaScript, written in
JavaScript

• SqueakJS [1]: Smalltalk environment running in the web browser
• Athens: Vector graphics library for Pharo developed by Igor Stasenko

− Original Pharo implementation:
http://smalltalkhub.com/#!/~Pharo/Athens

− Implementation for Amber Smalltalk using HTML5 canvas:
https://github.com/matthias-springer/amber-athens

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 4 / 38

http://smalltalkhub.com/#!/~Pharo/Athens
https://github.com/matthias-springer/amber-athens

ContextAmberIUse Case: Athens Vector Graphics Library

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber

Demonstration

Project Status

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 5 / 38

ContextAmberIUse Case: Athens Vector Graphics Library

Drawing Simple Paths with Athens

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 6 / 38

ContextAmberIUse Case: Athens Vector Graphics Library

Drawing Simple Paths with Athens

step14
| path |
path := surface createPath: [:builder |

builder
absolute;
lineTo: -50@ -50;
"quadric Bezier curve"
curveVia: 0@ -80 to: 50@ -50;
"cubic Bezier curve"
curveVia: 100@ -20 and: -50@20 to: 50@50;
"clockwise arc"
cwArcTo: 50@100 angle: 45;
"counter -clockwise arc"
ccwArcTo: -50@100 angle: 45.

builder close].

surface drawDuring: [:canvas |
surface clear: Color gray.
canvas setShape: path.
canvas draw].

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 7 / 38

ContextAmberIUse Case: Athens Vector Graphics Library

Drawing Simple Paths with Athens

• ControlPointLayer: show control points for Bézier/. . . curves, start point
and end point for all path segments, all path movements

• TangentLayer: show tangents/derivatives for curves at control points
• Activate layers on a per-path basis, but also globally
• Performance criteria: frames per seconds

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 8 / 38

ContextAmberIUse Case: Athens Vector Graphics Library

Drawing Morphs with Athens

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 9 / 38

ContextAmberIOverview of Amber Smalltalk

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber

Demonstration

Project Status

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 10 / 38

ContextAmberIOverview of Amber Smalltalk

Amber Smalltalk

• Client-side web application framework for dynamic JavaScript-based
web applications

• Smalltalk to JavaScript compiler and small/tidy Smalltalk standard
library

• No image: classes/runtime environment are initialized during startup
• Built-in IDE: legacy IDE and Helios IDE

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 11 / 38

ContextAmberIOverview of Amber Smalltalk

Why Amber Smalltalk?

• Nice framework, used by real people, good community
• Few classes, small project, easy to understand
• Well-structured object model and compiler
• Easy to prototype new ideas

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 12 / 38

ContextAmberIOverview of Amber Smalltalk

Smalltalk to JavaScript Compilation

1. Smalltalk Source Code (Smalltalk method)
2. Abstract Syntax Tree
3. Intermediate Representation
4. JavaScript Source Code
5. JavaScript evaluated: CompiledMethod

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 13 / 38

ContextAmberIOverview of Amber Smalltalk

Smalltalk to JavaScript Compilation

Compiler Parser

ContextInliningCodeGenerator

SemanticAnalyzer IRASTTranslator IRInliner

ASTProceedInliner

InliningJSTranslator

2: AST

7: IR 10: JS

11: JS

1: parse(ST)

3: compileNode(AST)

5: visit(AST) 6: visit(AST) 8: visit(IR)

4: visit(AST)

9: visit(IR)

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 14 / 38

ContextAmberIContextAmber

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber
Representing Layers
Layer Activation Modes
Unoptimized Method Execution
Method Inlining
Inlined Method Invalidation

Demonstration

Project StatusHasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 15 / 38

ContextAmberIContextAmber IRepresenting Layers

Representing Layers
Overview of Alternatives

• Class Name Prefix: layer contains partial methods, base class name
encoded in selector, e.g.:
TangentLayer»AthensHTMLPath$curveVia:to:

• Method Protocols: layer contains partial methods, base class name
encoded in method protocol, e.g. TangentLayer»curveVia:to: in
protocol AthensHTMLPath

• Partial Classes: layer references partial classes, one partial class per
base class contains partial methods, e.g. TangentLayer and
TangentLayer class»partials ˆ { AthensHTMLPathTangent }

ContextAmber uses Partial Classes.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 16 / 38

ContextAmberIContextAmber IRepresenting Layers

Handout only: Representing Layers

• Class Name Prefix
+ Few classes: only one class per layer.
+ Protocols be used to categorize methods.

• Method Protocols
+ Few classes: only one class per layer.
- Protocols cannot be used to categorize methods.

• Partial Classes
+ Protocols can be used to categorized methods.
+ Partial methods can be shared among multiple layers.
- Many classes: one per base class.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 16E / 38

ContextAmberIContextAmber IRepresenting Layers

Defining Layers and Partial Classes

ContextAmber
newPartialClass: #PartialClassName
baseClass: DemoClass
package: ’ContextAmber -Tests’

Figure: Declaration of partial classes

ContextAmber
newLayer: #LayerName
layerClasses: { PartialClassName }
instanceVariableNames: ’’
package: ’ContextAmber -Tests’

Figure: Declaration of layers

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 17 / 38

ContextAmberIContextAmber IRepresenting Layers

Handout only: Defining Layers and Partial Classes

• Layers are subclasses of Layer.
• Partial classes are subclasses of PartialClass.
• Layers/partial classes must be defined through ContextAmber API.
• Subclassing of layers is not allowed.
• Layers can have state accessible in partial classes.
• Base class and partial classes relationships are stored in methods
returning the base class and the collection of partial classes,
respectively.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 17E / 38

ContextAmberIContextAmber I Layer Activation Modes

Layer Activation Modes

Default
Layer»activate

Layer»deactivate

Object-wise
Object»activateLayer:

Object»deactivateLayer:
Object»resetLayer:

Scoped
BlockClosure»withLayer:

BlockClosure»withoutLayer:
BlockClosure»withResetLayer:

Precedence: global (default) → scoped → object-wise

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 18 / 38

ContextAmberIContextAmber I Layer Activation Modes

Handout only: Layer Activation Modes

• Scoped layer deactivation statements remain on the stack because
they also affect globally activated layers.

• Object-wise deactivation statements remain on the stack because they
also affect globally/scoped activated layers.

• Resetting a layer removes the layer from the stack (i.e., the original
state is restored as if we never interacted with that layer on that level).

• Layers are deactivated if not specified otherwise.
• No need for resetting layers globally since it is equivalent to
deactivating it globally.

• Layer activation/deactivation statements are order-sensitive only
within a level (i.e., activating a layer on an object and deactivating it
globally afterwards does not deactivate the layer).

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 18E / 38

ContextAmberIContextAmber I Layer Activation Modes

Example: Layer Activation

default object-wise scoped
instr. stack instr. stack instr. stack
+L1 +L4 +L1 -L2 -L1 +L2
+L2 +L2 +L3 +L1 -L1 -L2
-L1 +L2 *L1 -L4
-L3 *L3 -L4
+L4 -L2 -L2

+L2
composed stack (+L2, +L4, +L1, -L2, -L4, -L2, +L2)
layer composition (L1, L2)

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 19 / 38

ContextAmberIContextAmber IUnoptimized Method Execution

Unoptimized Method Execution

anAthensHTMLPath
curveVia: pt1 to: pt2
- calculate activeLayers
- call first layer

aControlPointLayer
curveVia: pt1 to: pt2

aTangentLayer
curveVia: pt1 to: pt2

(original) curveVia: pt1 to: pt2

1. C := self activeLayers.

Merge global stack, scoped stack, object stack.
2. nextLayer := C detect: [:layer | layer hasPartial: selector in: base].

Find top-most layer with a matching partial method.
3. nextMethod := (nextLayer at: base)>> selector.

Get CompiledMethod object for partial method.
4. nextMethod fn apply: self.

Execute partial method in the context of self.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 20 / 38

ContextAmberIContextAmber IUnoptimized Method Execution

Handout only: Unoptimized Method Execution

• Object>>activeLayers is expensive.
• apply is expensive in JavaScript.
• One additional method invocation per proceed call.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 20E / 38

ContextAmberIContextAmber IMethod Inlining

Optimized Method Inlining

anAthensHTMLPath
curveVia: pt1 to: pt2
- check if method is up to date
- ControlPointLayer>>curveVia: pt1 to: pt2
 - TangentLayer>>curveVia: pt1 to: pt2
 - original implementation

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 21 / 38

ContextAmberIContextAmber IMethod Inlining

Method Inlining

• Provide one composition-specific method containing all proceed calls
• AST Visitor replaces proceed send nodes
• Replace with send node executing next partial method as closure
(block)

DemoLayer >>method: arg
^ self proceed: arg + 1

DemoClass >>method: arg
^ 7 * arg

InlinedObject >>method: arg
^ ([:arg1 | ^ 7 * arg1] value: arg) + 1

• Inlined method calls become block nodes ([...] value)
• Returns inside method blocks must be treated as local returns instead
of non-local returns

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 22 / 38

ContextAmberIContextAmber IMethod Inlining

Handout only: Method Inlining (Code)

• ASTProceedInliner>>inlinedMethod

1. Get AST of top-most partial method.
2. Visit AST, replacing proceed send nodes with inlinedSend.
3. Usual compilation process (semantic analyzer, IR generation,

JavaScript code generation).
• ASTProceedInliner>>inlinedSend: if we encounter proceed send node,
replace send with cached inlinedSend, or if it does not exist yet, create
it as follows

1. nextLayer := C detect: [:layer | layer hasPartial: selector in: base
].

2. nextMethod := (nextLayer at: base)>> selector.
3. nextAST := nextMethod ast.
4. (ASTProceedInliner for: selector in: base withLayers: (C until:

nextLayer))visit: nextAST.
5. Create BlockNode with nextAST sequenceNode as block sequence node

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 22E / 38

ContextAmberIContextAmber IMethod Inlining

Object-wise Method Inlining
Overview of Alternatives

• Class-wide Method Inlining: inlined methods stored in prototypes
• Object-wide Method Inlining: inlined methods stored in objects
• Class-wide Wrappers with Method Dictionaries: one dictionary
per CompiledMethod stores mapping from layer composition to inlined
method

• Cached Class-wide/Object-wide Method Inlining: inlined
methods cached in dictionary

• Hybrid Approach: use Cached Object-wide Method Inlining and
switch to Cached Class-wide Method Inlining or Class-wide Wrappers
if a lot of instances are created

ContextAmber uses the Hybrid Approach with caching.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 23 / 38

ContextAmberIContextAmber IMethod Inlining

Handout only: Object-wise Method Inlining

• Class-wide Method Inlining: causes method invalidation and
recompilation whenever a method is called on a different object with a
different layer composition.

• Object-wide Method Inlining: not practical for a large number of
instances.

• Class-wide Wrappers with Method Dictionaries: requires usage of
JavaScript apply() / Smalltalk perform:. Slower than normal method
invocation.

• Cached Class-wide Method Inlining: causes method invalidation
whenever a method is called on a different object with a different layer
composition, but probably no recompilation.

• Cached Object-wide Method Inlining: can speed up first method
execution after layer composition change.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 23E / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Invalidation Causes

Why does an inlined method become outdated?

• Base method recompilation
• Partial method recompilation
• Layer composition change

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 24 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Reinlining Point of Time
Overview of Alternatives

When should ContextAmber reinline an outdated inlined method?

• On Layer Composition Change: does not work for class-wide
method inlining

• On Method Invocation: inlined method stores its own layer
composition and compares against self activeLayers on invocation

• On Method Invocation with Cached self activeLayers:
update cached layer composition if global/scoped version number
changed or object is dirty

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 25 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

On Method Invocation with Cached self activeLayers

path1
{dirty = "false"}
{version = "5"}

{activeLayers = "..."}

path2
{dirty = "true"}
{version = "5"}

{activeLayers = "..."}

path3
{dirty = "false"}
{version = "4"}

{activeLayers = "..."}

-version = 5
AthensHTMLPath

path1 >> curveVia: pt1 to: pt2

path1 dirty? recalcuate activeLayers

path1 version = AthensHTMLPath version?

method activeLayers = cached activeLayers?

execute

method for
activeLayers in cache?

generate method
+ put in cache

yes
no

no

yes

yes
no no

yes

install method

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 26 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Handout only: On Method Invocation with Cached
self activeLayers

• dirty bit: indicates whether the layer composition changed for the
object.

• version number: indicates whether the layer composition changed for
all objects (scoped/global). Without the version number,
ContextAmber would have to set the dirty bit on all instances.

• Red items: actions performed instead of self activeLayers.
• Blue items: method inlining.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 26E / 38

ContextAmberIContextAmber I Inlined Method Invalidation

On Method Invocation with Cached self activeLayers

Object >>activeLayers
self dirty | (self cachedGlobalVersion ~= self class

globalVersion) | activeLayers isNil
ifTrue: [

activeLayers := self calculateActiveLayers.
self dirty: false.
self cachedGlobalVersion: self class globalVersion].

^ activeLayers

Object >>activateLayer: aLayer
...
self dirty: true.

Layer >>activate
...
self partials do: [:partial |

partial base globalVersion: partial base globalVersion + 1
].

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 27 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Reinlining Point of Time
Optimizations for Object-wide Method Inlining

Idea: since every object has its own method, we can immediately install a
new inlined method when the version number changed or the object is dirty

• Do not compare activeLayers array
• Optimization not possible for Class-wide Method Inlining: even if
object is not dirty and version numbers did not change, we might have
to install a new inlined method (if the method is called on different
objects with different layer compositions)

• Store dirty and version in method object (not practical for class-wide
method inlining, because space complexity increases too much)

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 28 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Optimizations for Object-wide Method Inlining: Example

Point

p1
{x = "4"}
{y = "10"}

p2
{x = "7"}
{y = "14"}

Function

p1_x
{dirty = "false"}
{version = "5"}

p2_x
{dirty = "false"}
{version = "4"}

p3
{x = "1"}
{y = "9"}

p3_x
{dirty = "true"}
{version = "5"}

Point_y

Compiled_x
{version = "5"}

CompiledMethod -x
-y
+x()
+y()

aPoint proto
klass

Compiled_y

<<constructor>>

<<prototype>>

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 29 / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Handout only: Optimizations for Object-wide Method
Inlining: Example

• Global version counter per CompiledMethod is increased whenever the
global/scoped layer compositon changes.

• Point>>y is inlined class-wide, Point>>x inlined object-wide.
• p1 x can be executed right away.
• p2 x must be reinlined because of a global/scoped layer composition
change.

• p3 x must be reinlined because of a local/object-wise layer composition
change.

• Version numbers are different from version numbers presented before!
In the previous example, we used them to ensure that activeLayers is up
to date. Here, we use them to check if an inlined method is up to date.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 29E / 38

ContextAmberIContextAmber I Inlined Method Invalidation

Layer Signature

• Instead of version number/layer composition array, represent layer
composition by unique integer

• Advoids invalidating inlined methods if a layer composition change is
performed and inverted again

• Speeds up method dictionary lookup

Current Approach

Need bijective mapping L∗ → Z

• Layer L has unique ID id(L)
• Use Cantor’s tuple function for composition C = (L1, L2, . . . , Ln)

sig(C) = πn+1(id(L1), id(L2), . . . , id(Ln), n)
• Problem: function grows too fast

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 30 / 38

ContextAmberIDemonstration

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber

Demonstration

Project Status

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 31 / 38

ContextAmberIDemonstration

Demonstration

Athens Paths with ContextAmber Demo

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 32 / 38

ContextAmberIProject Status

Overview

Introduction

Use Case: Athens Vector Graphics Library

Overview of Amber Smalltalk

ContextAmber

Demonstration

Project Status

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 33 / 38

ContextAmberIProject Status

Project Status (work to do)

• Object-wide Method Inlining
• Class-wide Wrappers with Method Dictionaries
• Heuristics (for Hybrid Approach)
• Layer Signatures
• Exception handling: scoped layer deactivation
• IDE support for Helios
• JavaScript engine / JIT optimizations (e.g. adding attributes to
objects randomly is discouraged)

• Performance Benchmarks: which approach is fastest?

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 34 / 38

ContextAmberIAppendix

Appendix

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 35 / 38

ContextAmberIAppendixIAmber Class Model

Class Model

 @x
 @y

aPoint

 x()
 _x()
 y()
 _y()

aPoint proto

 basicAt()
 _basicAt_put_()

anObject proto

 _asString()
 _class()

aProtoObject
proto

SmalltalkRoot

{}

nil

Point
 _x_y_()

Point proto

Object proto

ProtoObject
proto

 subclass...()
aClass proto

 methodAt()
aBehavior proto

Object

ProtoObject

Point class

 _isMetaClass()
 _theNonMetaClass()

aMetaclass proto

Object class

ProtoObject
class

Class ...

...

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 36 / 38

ContextAmberIAppendixIAmber Class Model

Handout only: Class Model

• Every Smalltalk object is a JavaScript object, but not vice versa.
• Classes are implemented via the JavaScript prototype chain.
• Instances of the same class share the same prototype. The prototype
contains instance methods.

• Notation: instance variables prefix , method selector prefix _ and :
replaced by _

• Light gray boxes: Smalltalk objects, white boxes: prototype objects
(not Smalltalk objects), black boxes: special objects

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 36E / 38

ContextAmberIAppendixIAmber Class Model

Smalltalk to JavaScript Example (simplified)

Point >>+ aPoint
^ Point

x: self x + aPoint asPoint x
y: self y + aPoint asPoint y

function (aPoint) {
var self = this;
var $1, $2, $3, $3;

$1 = self._x(); $2 = aPoint._asPoint ();
$3 = $2._x(); $4 = $1.__plus($3);

$5 = self._y(); $6 = aPoint._asPoint ();
$7 = $6._y(); $8 = $5.__plus($7);

$7 = globals.Point._x_y_($4, $8);
return $7

}

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 37 / 38

ContextAmberIAppendixIAmber Class Model

References

Bert Freudenberg, Dan H.H. Ingalls, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld.
Squeakjs: A modern and practical smalltalk that runs in any browser.
In Proceedings of the 10th ACM Symposium on Dynamic Languages,
DLS ’14, pages 57–66, New York, NY, USA, 2014. ACM.

Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld.
An open implementation for context-oriented layer composition in
contextjs.
Sci. Comput. Program., 76(12):1194–1209, December 2011.

Hasso Plattner Institute, Software Architecture Group ContextAmber January 13, 2015 38 / 38

	Introduction
	Use Case: Athens Vector Graphics Library
	Overview of Amber Smalltalk
	ContextAmber
	Representing Layers
	Layer Activation Modes
	Unoptimized Method Execution
	Method Inlining
	Inlined Method Invalidation

	Demonstration
	Project Status
	Amber Class Model

