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ABSTRACT

We present Context Amber, a framework for context-oriented
programming, in Amber Smalltalk, an implementation of
the Smalltalk programming language that compiles to Java-
Script. ContextAmber is implemented using metaprogram-
ming facilities and supports global, object-wise, and scoped
layer activation. Current COP implementations come at the
expense of significantly reduced execution performance due
to multiple partial method invocations and layer composi-
tion computations every time a layered method is invoked.
ContextAmber can reduce this overhead by inlining partial
methods, caching layer compositions, and caching inlined
layered methods, resulting in a runtime overhead of about
5% in our vector graphics rendering benchmarks.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming;

D.3.4 [Programming Languages|: Processors—code gen-
eration, optimization

General Terms

Languages

Keywords

Context-oriented programming, partial method inlining, in-
lined layered method invalidation

1. INTRODUCTION

Layer-based context-oriented programming [6] is a way
to modularize crosscutting concerns that can dynamically
adapt their runtime behavior: layers can be activated and
deactivated at runtime, making it hard to predict the se-
quence and nesting of invoked partial methods for a given
layered method at compile time. Performance studies have
shown that in static aspect-oriented programming, where as-
pect weaving is done at compile time, the runtime overhead
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can be as small as 1% [3|, whereas in context-oriented pro-
gramming, the performance decrease of layer-aware method
dispatch is typically more than 75% [1].

Upon invocation of a layered method, a COP implemen-
tation without any further optimizations has to perform the
following steps.

1. Compute the receiver’s layer composition (active layers).

2. Find and invoke the partial method corresponding to the
topmost layer having a partial method for the invoked
base method.

3. Find and invoke the next partial method when a proceed
call is encountered.

In this paper, we present optimizations that speed up the
execution of COP applications: our implementation, Con-
textAmber, avoids unnecessary computations of layer com-
positions and reduces the number of method invocations by
inlining partial methods. It is no longer necessary to find
the next corresponding partial method since only a single
fully inlined method is invoked. Note, that finding the next
partial method can be expensive in other implementations,
because it requires going through the collection of active
layers and checking whether a layer has a method for the re-
ceiver’s class or one of the receiver’s super classes. Our main
contribution is an evaluation of techniques for invalidating
inlined methods.

ContextAmber is implemented using JavaScript/Smalltalk
metaprogramming facilities and does not require changes
to the underlying JavaScript interpreter or virtual machine.
Most findings of this paper can be applied to all program-
ming languages that support on-the-fly code generation like
Ruby, Smalltalk, or JavaScript.

In the remainder of this paper, we discuss vector graph-
ics rendering debugging which serves as a running example
in this paper (Section . In Sections we present the
key ideas of our implementation, along with performance
measurements in Section

2. VECTOR GRAPHICS RENDERING DE-
BUGGING WITH COP

In this section, we will show how graphical user interfaces
can be rendered in Amber Smalltalk using Athens, serving
as a running example for the remainder of this work.

AthensE] is a vector graphics library available for Pharo
and Amber Smalltalk. It provides a simple API for drawing

1http://smalltalkhub.com/#!/~Pharo/Athens
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geometric shapes such as rectangles and ellipses. It is also
possible to define paths which consist of a number of path
segments. A segment can be a line or any kind of mathe-
matical curve, e.g., a Bézier curve. Once a path object is
created, it can be shared in the application and be drawn
an arbitrary number of times.

Consider, for example, that Athens is used to draw the
user interface for an application. The user interface consists
a small number of distinct user interface elements. All ele-
ments of a certain type are separate objects but share the
same path objects for drawing, making it possible to enforce
a consistent style and to change this style easily. For exam-
ple, every time the application draws a buttoré it uses the
path defined in Figure

Control Point Layer.

To make it easier to find drawing bugs, a control point
layer is defined, which draws control points for all segments
of a path. Control points are, for example, start and end
points of lines and curves, or Bézier control points.

moveTo: aPoint
self proceed: aPoint.
self drawControlPoint: endPoint.

drawControlPoint: aPoint
canvas pushStyle.
canvas fillStyle: 'rgba (0, 0, 0, 0.5)"'.
canvas fillRect: (aPoint — (5@5)
corner: 10@10).
canvas popStyle.

path := surface createPath: [ :builder |
builder
absolute;
moveTo: 5@0;
lineTo: 45@0;
cwArcTo: 50@5 angle: 90;
lineTo: 50@15;
cwArcTo: 45@20 angle: 90;
lineTo: 5@20;
cwArcTo: 0@1l5 angle: 90;
lineTo: 0@5;
cwArcTo: 5@0 angle: 90 ].

canvas draw: path.

Figure 1: Drawing a rectangle with rounded corners in
Athens.

Figure [2] shows how Athens draws paths. AthensCanvas
is the entry point for all drawings and has methods for per-
forming primitive operations such as moving the pen some-
where on the canvas. The draw: method can be used to
draw complex shapes such as paths. It delegates the draw-
ing to that path object which acts as a proxy here. A path
contains a list of segments that is created when the path is
created. During drawing, these segments are replayed using
double dispatch. In our example, the path object simply
forwards these commands to the canvas objec

: AthensCanvas : AthensPath

: AthensMove
Segment

: AthensCWArc
Segment

draw: aPath ]I_ !
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Figure 2: Drawing paths in Athens.

2To simplify this example, we assume that all buttons have
the same size.

31t is possible to extend Athens for different drawing back-
ends, requiring a different interface, in which case the path
object is an adapter.

Figure 3: Some partial methods for drawing control points.

Figure[3]shows some of the partial methods defined for the
control point layer. AthensPath is the base class for these
methods. ContextAmber allows programmers to add new
methods to classes. For example, drawControlPoint: is not
defined on AthensPath. By activating the control point layer
on the path defined in Figure [1} it is possible to show con-

trol points only for buttons, but not for other user interface
elements.

3. IMPLEMENTATION

ContextAmber is our framework for context-oriented pro-
gramming and used to evaluate and benchmark the concepts
presented in this paper. It runs on top of Amber Smalltalkﬂ
an implementation of the Smalltalk programming language
that compiles to JavaScript.

Amber Smalltalk Object Model.

The Amber Smalltalk object model is minimalistic but fol-
lows closely the Smalltalk-80 object model. Every Smalltalk
object is at the same time a JavaScript object. Instance-
of and inheritance relationships are implemented using the
JavaScript prototype hierarchy, i.e., every object has a pro-
totype containing the instance methods for the correspond-
ing class, and that object’s prototype contains the instance
methods of the super class. Message passing is implemented
by JavaScript method calls, where colons in the selector are
replaced with underscores.

When a Smalltalk method is compiled, its source code is
first converted into an AST. Then a semantic analyzer per-
forms checks and determines the type and scope of variables.
The AST is then converted into an intermediate representa-
tion (IR) which is similar to the AST but distinguishes be-
tween local returns and non-local returns, for example. An
IR tree can directly be transformed into JavaScript code.

Context Amber performs method inlining on the AST level,
making it possible to use the step-through debugger, which
operates on the AST.

Layer Activation.
In ContextAmber, layers can be activated globally, within
a certain scope, and for a single object. Since JavaScript is

“http://amber-lang.net
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a single-threaded programming language, scoped layer acti-
vation can be treated like global layer activatiorﬂ as long as
the effect is reversed once the control flow leaves the scope.
As will be described in Section [] object-wise layer activa-
tion has far-reaching effects on method inlining, since dif-
ferent instances of the same class can have different layer
compositions.

Global: +L1 +L4
Scoped: +L2 -14 +L3
Composition: =(L1, L2, L3)
objl obj2 obj3
Object: L1+L4 L1+L1 L1-L2+L5
Composition: | = (12,13, L4) | | =(L2,L3,L1) | | = (L3, L5)

Figure 4: Layer Composition Calculation in ContextAmber.

Figure [f] shows how ContextAmber calculates an object’s
layer composition. Object-wise layer activation has a higher
precedence than scoped layer activation, which has a higher
precedence than global layer activation. In the rest of this
work, we do not distinguish between global and scoped layer
activation and refer to the global/scoped layer composition
as the Global Layer Composition (italic text in Figure [4]).

4. PARTIAL METHOD INLINING

In this section, we discuss ContextAmber’s two variants
for inlining partial methods and their implications.

4.1 Method Inlining

ContextAmber hooks into the Amber compilation process
and inlines methods on the AST level. A visitor looks for
proceed sends and replaces them with a value send to a
block closure containing the sequence of instructions of the
next partial method in the current layer composition. This
approach takes care of name clashes of temporary variables,
as opposed to just copying the instructions without a block
closure. Return statements in inlined methods must be mod-
ified, such that they don’t cause the entire method to end
but just return from the block closure (local return).

Class-specific Method Inlining.

Inlined methods are stored on the prototype object for the
class (like ordinary instance methods), i.e., the prototype
that is shared by all instances of a class. This makes object-
wise layer activation difficult, because ContextAmber might
have to execute different inlined methods, depending on the
object’s layer composition.

Instance-specific Method Inlining.

Inlined methods are stored as attributes on the object it-
self, allowing objects with different layer compositions to
have their own inlined methods. This is usually not sup-
ported by Smalltalk, but, in JavaScript, every object can
have its own methods. Some programming languages have
similar concepts: for example, Ruby supports object-specific
methods using singleton classes (eigenclasses). In some other
programming languages, instance-specific method inlining
can be harder to implement using only metaprogramming

5 Amber Smalltalk does currently not support processes.

facilities: an implementation would have to create a sub-
class containing the inlined method and change the object’s
class to that subclass. Alternatively, layered methods could
be wrappers delegating calls to composition-specific item de-
scription objects [2], or look up methods in a separate dic-
tionary.

Instance-specific inlining can be faster than class-specific
inlining because no new methods have to be installed when
a method is called on objects with different layer composi-
tions alternately. However, having too many different layer
compositions can affect caching and VM optimizations and
slow down the system. Future versions of ContextAmber
might automatically decide whether to use class-specific or
instance-specific inlining and adapt that decision during run-
time if necessary. Currently, the programmer has to decide.

4.2 Method Cache

ContextAmber maintains a fixed-size method cache map-
ping layer compositions to inlined methods. Whenever an
inlined method is requested, it is first looked up in the
method cache. If an inlined method was not found in the
cache, it is generated and added to the cache. Old inlined
methods are evicted from the cache in a FIFO manner.

Method caches make instance-specific method inlining fea-
sible even with a large number of objects, because the same
inlined method can be shared by multiple objects.

S. INLINED METHOD INVALIDATION

Method inlining improves the execution performance of
layered methods; however, the overhead of iterating through
the layer composition and performing a number of partial
method dispatches is just shifted to another point of time.
Whenever we inline a method, we are speculating that the
layer composition will remain constant for a while, but we
have to validate that assumption at some point. Once it
becomes apparent that an inlined method is no longer up to
date, it is invalidated, which causes the inlined method to
replace itself with an updated version when it is called again.
In this section, we discuss how and when ContextAmber
invalidates inlined methods (see Figure [5| for an overview).

5.1 Method Invalidation Reasons

The following list gives an overview of the events that can
cause an inlined method to be invalidated.

e Adding/removing a Partial Method. If a partial method
is added or removed for a layer that is currently active,
ContextAmber might have to add or remove that partial
method to corresponding inlined layered methods.

e Calling a Method on a Different Object. With object-wise
layer activation, two different instances of the same class
can have different layer compositions and, therefore, dif-
ferent inlined layered methods. A layered method that is
inlined for the entire class has to invalidate itself when it is
invoked on an object having a different layer composition
than the one it was created for.

e Layer Composition Change. Inlined methods can be be-
come outdated when a layer is activated or deactivated.
5.2 Invalidation on Invocation

Every inlined method contains an update header that de-
termines if the method is up to date. If this check is pos-
itive, then the execution of the inlined method continues.



instance-  class- instance update header composition change
specific ~ specific space overhead runtime overhea, runtime overhead
Comparing signatures v v no overhead compute compos1t10n no overhead
compare signature
‘ ‘ l?oolean field compare dlrtyi bit object: set dirty bit
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on composition change generate mult. methods

When using instance-specific method inlining, an additional method object is stored per instanceﬂ

Figure 5: Comparison of techniques for layered method invalidation and inlining.

Otherwise, a new version of the inlined method with the
current layer composition is generated, installed, and exe-
cuted. In this subsection, we give an overview of different
update headers and when they are suitable.

Comparing Composition Signatures.

Every layer has a unique integer identifier. A layer compo-
sition can be uniquely represented by its layer composition
signature (i.e., fingerprint [§]): a concatenation of the lay-
ers’ IDs and separator characters. The most basic update
header is shown in Figure @

(layered method

invocation) ‘
partial method inlining

install

compute layer method
comp. + signature
lno yes
signature yes (composition method in | no generate method
differs? already computed) cache? + put in cache

;

(execute method)

Figure 6: Update header for comparing layer composition
signatures.

When an inlined layered method is invoked, the update
header computes the receiver’s layer composition and its
layer composition signature and compares it with the layer
composition signature at the point of time when the inlined
method was generated. That value is hard-coded as a string
literal in the update header’s source code. If the signature
values differ, then a new inlined method is created, installed,
and called. A method cache is used to cache inlined methods
and avoid unnecessary code generation.

Caching Composition Signatures.

The update header in Figure [f] has to compute the cur-
rent layer composition every time the method is invoked.
ContextAmber can speed up this step by caching layer com-
position signatures on a per-object basis. Recalculating the
signature whenever a composition change is made is not suit-

SWe consider the average case where the layer composition
was not changed (or invariant layer composition change se-
quences).

"Method caches make it easy to share the same method
object among multiple instances.

able, because a global layer composition change can affect a
large number of objects whose signatures would have to be
updated (Figure . Instead, the composition signature be-
comes outdated whenever the layer composition is changed
globally or on a per-object basis: in the former case, a ver-
sion number is incremented on all base classes affected by
the layer, indicating that a change was made that affects
all of its instances. In the latter case, the object is marked
as dirty, indicating that only the layer composition for that
single object changed. The update header uses the cached
composition signature if the receiver is not marked dirty and
its version number equals its class’ version number. Other-
wise, the layer composition is recomputed, along with its
signature (Figure [7).

(layered method
invocation)

omposition signature cachin

\d
receiver dirty? | 2=
l no
receiver version compute layer
out of date? comp. + signature

.

v - yes

install
method

generate method
+ put in cache

method in
cache?

compute layer
composition

no

signature
differs?

lno

(execute method)

Figure 7: Update header for caching layer composition sig-
natures.

In total, ContextAmber stores three additional fields on
every object with a layered methocﬂ the cached layer com-
position signature (string), the version number (integer) of
the object’s class at the point of time when the layer sig-
nature was cached, and a dirty bit (boolean). These three
fields are refreshed whenever the composition signature is
recomputed.

Note, that composition signature is both hard-coded in
the method source code and stored as a field on every ob-
ject having layered methods. These two values are being
compared in the update header. ContextAmber uses this
technique for class-specific method inlining.

8These fields are stored as JavaScript object attributes that
are not visible from the Smalltalk side and do not interfere
with Smalltalk code.



Detecting Composition Changes without Signatures.
The update header in Figure [7] has to compare compo-
sition signatures because a different inlined method might
have to be installed even if there are no changes to the layer
composition: if a class-specific inlined method is invoked on
objects with different layer compositions. Instance-specific
inlined method do not have to be invalidated in that case,
because every object has its own method (Figure .

(layered method

invocation) inethiod inl 1
partial method iniining
install
method
1;“:?2::; ilsoiti{:)ln yes | compute layer method in | no generate method
signaturepdiﬂ'erﬁ composition cache? + put in cache

lm

(execute method)

Figure 8: Update header for detecting layer composition
changes without comparing layer composition signatures.

If the layer composition is changed for an object, Contex-
tAmber simply removes affected inlined methods from the
object. The object’s class has corresponding instance meth-
ods that will generate and install a new inlined method on
the object. No dirty bit is needed.

If the layer composition is changed globally, Context Am-
ber updates the global layer composition signature for all
affected method objects stored in the class’ method dic-
tionary, i.e., it updates an instance variable on all affected
CompiledMethod objectﬁﬂ The update header has the global
layer composition signature at the time of inlining hard-
coded as a string and compares it with the signature stored
in the class’ method object. Note, that invariant global layer
composition change sequences, i.e., sequences of global layer
composition changes that do not change the global layer
composition (e.g., activating and deactivating a layer glob-
ally), do not invalidate a method, because the global layer
composition signature stays the same. ContextAmber uses
this technique for instance-specific method inlining,.

6. BENCHMARKS

As a benchmark, we are rendering a simplified version of
the GhostScript Tiger (Figure @7 consisting of 31 paths and
211 segments in total. If the control point layer is activated,
each segment draws at least one control point.

Figure [I0] shows the runtime for rendering the tiger 1000
times in a looﬂ The runtime for the first frame is higher
than the average runtime, because this is when an inlined
method is created for the first time. The runtime increases
if new methods have to be installed: control point layer
(mized) denotes the case where the control point layer is ac-
tive only on 50% of the path objects (on every second one).
If method caching is enabled, its class-specific case remains
reasonably fast because inlined methods with and without
the control point layer are cached; subsequent frame render-

90nly layers having a corresponding partial method are part
of that signature.

OBenchmarks were run on a MacBook Pro with an i7-
4558U CPU and 16 GB RAM, using Chrome 41.0.2272.118
(64-bit). We used lgit@github.com:matthias-springer/
cop-ContextAmber.git at commit 0006c8b997.

(a) Without layers.

(b) Control point layer.

Figure 9: GhostScript Tiger rendering with Athens.

ings with instance-specific inlining are already fast without
caches, because no new methods have to be installed. How-
ever, rendering the first frame benefits from method caches
even then, because only two methods are then generated and
cached (with/without layer). The benchmarks in Figure
do not change the layer composition during rendering.
Figure shows the average runtime for activating and
immediately deactivating a layer again. Activating a layer
object-wise is slow, because ContextAmber stores layer ac-
tivation statements in a custom data structure consisting of
two stacks: one stack for activations, one stack for deactiva-
tions. This is not necessary for global layer activation, be-
cause it has the lowest precedence: it is sufficient to store one
list of currently activated layers. Instance-specific inlining
is slower than class-specific inlining because ContextAmber
deletes inlined methods (object) or recomputes the global
layer composition signature (global) instead of marking the
object dirty or increasing a version number, respectively.

7. RELATED WORK

ContextJS is a COP implementation for JavaScript [9]. It
relies solely on metaprogramming facilities. It is similar to
ContextAmber in a sense that both run on JavaScript. It
inlines proceed calls in the same way ContextAmber does,
and adds an update header to the beginning of every inlined
method checking the object’s cached layer composition sig-
nature; caching is, however, not supported for object-wise
layer activation because every object can provide its own
method for computing the stack of activated layers [8].

ContextS is a COP implementation for Squeak [5]. Lay-
ers are represented by classes and their methods contain the
name of the base class, the selector, and the partial method
as a block closure in the source code. In Context Amber, par-
tial classes containing partial methods are associated with
layer classes in a many-to-many relationship.

ContextL is a performance-efficient COP implementation
for CLOS. Layers are internally represented by classes and
layer compositions are cached classes that inherit from (mul-
tiple) layer classes: the topmost layer class and a layer com-
position class for the rest of the layer composition, where
the former one takes precendence over the latter one [4].

8. FUTURE WORK

The ideas presented in this work are based entirely on
metaprogramming. Changing the language interpreter or
virtual machine, however, allows for a variety of different
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Figure 11: Runtime for activating/deactivating a layer.

implementations. Future work might focus on making poly-
morphic inline caches [7] aware of layer compositions: the
invoked method could be determined based on the polymor-
phic type of the receiver and its layer composition signature.

Another optimization could make systems, that do al-
ready perform aggressive method inlining, aware of layer
compositions and proceed calls. Basically, proceed calls
could be treated as a special form of method calls with a
different method lookup procedure in the interpreter. To-
gether with special guard clauses, a proceed call could look
as ordinary to the inliner as any other method call. Partial
Evaluation in Truffle |[10] is an example of a very aggressive
form of method inlining that could be made aware of layer
compositions: it continues inlining methods until it encoun-
ters a statement that tells it to stop inlining.

Future work could also investigate subclassing of partial
classes.

9. SUMMARY

We presented our COP implementation ContextAmber
for Amber Smalltalk. ContextAmber reduces the runtime
performance overhead of context-oriented programming by

caching and executing inlined methods specific to a certain
layer composition. ContextAmber can inline methods on
a per-instance and on a per-class basis, and depending on
the use case, the programmer can choose which one to use.
ContextAmber is implemented using metaprogramming fa-
cilities, restricting our range of optimizations. Future work
might investigate optimizations on the virtual machine level.
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