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Classes as Layers: Rewriting Design Patterns with COPI Introduction

Introduction

• Related Work: Instantiable layers in JCop [1] etc., previous work on
COP-based class extensions [2]

• Idea: Unify classes and layers; partial methods are defined as part of
classes (i.e., classes can acts as layers)

• This presentation: How to rewrite Decorator, Observer, Visitor [3] to
take advantage of that

− Pattern description
− Traditional implementation example
− COP implementation example
− Benefits and disadvantages

• Not mere refactorings, but rewritings: changed semantics
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Classes as Layers: Rewriting Design Patterns with COPIClasses as Layers

Language Design

• Classes can have 4 different kinds of methods:
− Member method (instance method)
− Member partial method (partial method defined for instances)
− Static method (class method)
− Static partial method (partial method defined for class)

• Arbitrary objects can be (de)activated (no dedicated layer construct)
− Global activation
− Block scope activation
− Per-object activation [4]

• Object providing partial methods: layer object
• Object(s) being adapted: affected object(s)
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Classes as Layers: Rewriting Design Patterns with COPIClasses as Layers

Language Design
Example

class T { /* target class */
def foo() { /* ... */ }
def bar() { return "T"; }

}

class L { /* layer class */
def T.foo() {
thisLayer.bar(); /* –> "L" */
this.bar(); /* –> "T" */

}

def bar() { return "L" }
}

new L().activate(); /* global activation */
new L().activate(new T()); /* per-object activation */
with (new L()) { /* ... */ } /* block scope activation */
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Pattern Description

+ =

• Purpose: Adding/removing responsibilities to an object at runtime
• Mechanism: Wrapping the object in a decorator, using the decorator
instead of the object from now on

• Problem: References to the original object are not affected
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Example

top

right

bottom

left

• Example: Game with 2D
grid (consisting of fields)

• Fields connected with
adjacency lists

• Would like to ensure that
references point to
decorated fields

COP ’16 TiTech / HPI July 19, 2016 9 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Example

top

right

bottom

left

• Example: Game with 2D
grid (consisting of fields)

• Fields connected with
adjacency lists

• Would like to ensure that
references point to
decorated fields

COP ’16 TiTech / HPI July 19, 2016 9 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Traditional Implementation: Example

class Field {
def left, right, top, bottom;
def draw() { /* ... */ }
def enter(entity) { /* ... */ }
def neighbors() { /* ... */ }

}

class BurningFieldDecorator {
def decoratee;
def damage = 15;

def draw() { /* ... */ }

def enter(entity) {
entity.health -= damage;
decoratee.enter(entity);

}

def neighbors() { return decoratee.neighbors(); }
}COP ’16 TiTech / HPI July 19, 2016 10 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Example

-left : Field
-right : Field
-top : Field
-bottom : Field

+draw()
+enter(entity)

Field

-damage

+Field.draw()
+Field.enter(entity)

BurningFieldDecorator

def Field.enter(entity) {
 entity.health -= thisLayer.damage;

proceed(entity);
}

• A decorator is an object that provides partial methods for
additional/modified behavior

• Partial methods can call proceed to invoke next/original method
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Decorator
COP Implementation: Example

def field = /* ... */
def decorator = new BurningFieldDecorator();

// Active decorator on object field
decorator.activate(field.left);

// Call decorated method
def moveLeft() {
def player = /* ... */
field.left.enter(player);

}
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Example

def field = /* ... */
def decorator = new BurningFieldDecorator();
def anotherDecorator = new MineFieldDecorator();

// Active decorator on object field
decorator.activate(field.left);
anotherDecorator.activate(field.left);

// Call decorated method
def moveLeft() {
def player = /* ... */
field.left.enter(player);

}
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Consequences

Method calls within an object (this calls) are affected
Is that a bad thing if we layer only public methods?
Partial methods rely on static types for target class (i.e.,
BurningFieldDecorator can only layer Field objects)
→ Do we need wildcard class names? (*.enter(entity))
No “object schizophrenia”
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
Pattern Description

event

notify

• Purpose: Reacting to state changes/events of a dependent object
• Mechanism: Maintaining a list of observers, notifying all observers
about state changes/events

• Problem: All observers are notified about all state changes/events
• Problem: Difficult to pass information about different events
• Problem: Troublesome to observe all instances of a class
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Observer
Example

• Application with login, register functionality: class UserManager
• LoginMonitor: listens to login attempts
• SecurityMonitor: listens to failed login attempts and new user
registrations
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
Traditional Implementation: Example

class UserManager {
def observers = new List();
def notify(type, data) {
for (def o in observers) {
o.update(type, data);

}
}

def checkCredentials(user, pass) {
notify("login", user)
if (wrongPass) {
notify("failed_login", user);

}
}

def createAccount() {
notify("create_acc", null);

}
}

class SecurityLog {
def update(type, data) {
if (
type == "failed_login" ||
type == "create_acc") {
/* ... */

}
}

}

class LoginMonitor {
def update(type, data) {
if (type == "login") {
/* ... */

}
}

}
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Example

ConcreteUserManager

+checkCredentials(user, pass)
+createAccount(user, pass)
+setPermissions(user, perm)

<<Interface>>
UserManager-chart

+UserManager.checkCredentials(u, p)

LoginMonitor

-log

+UserManager.createAccount(u, p)
+UserManager.checkCredentials(u,p)

SecurityLog

• An observer is an object that provides partial methods for methods
indicating state changes/events

• Partial methods immediately call proceed and handle event
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Example

class SecurityLog
def UserManager.checkCredentials(user, pass) {
if (!proceed(user, pass)) {
/* ... */

}
}

}

def userManager = /* ... */
def loginMonitor = new LoginMonitor();
def securityLog = new SecurityLog();

// Activate observer on object userManager
loginMonitor.activate(userManager);

// Activate observer on all UserManager implementation objects
securityLog.activate();

COP ’16 TiTech / HPI July 19, 2016 18 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Consequences

Less Flexibility: Notifications only before or after method calls, but
not inside (less flexibility)
Modularity: Potentially tighter coupling between subject and observer
(binding observer to method names of subjects)
Argument Passing: Every partial method can have its own signature
Notification Levels: Observers can listen to different events
Group Observation: Observers can listen to all objects of a class
Dynamic Adaptation: Subject does not have to implement an
interface
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Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
Pattern Description

accept

visit*
accept

visit*

visit*

(visitor)

(object
structure)

• Purpose: Adding new operations to a family of classes
• Mechanism: Separate visitor class, back-and-forth interaction (double
dispatch) between objects and visitor

• Problem: Complex object interaction (double dispatch)

COP ’16 TiTech / HPI July 19, 2016 20 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
Example

Expr

-value

NumberExpr

-left
-right

PlusExpr

-left
-right

MultiplyExpr
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Visitor
Traditional Implementation: Example

class PlusExpression extends Expression {
def left, right;
def accept(visitor) { visitor.visitPlusExpr(this); }

}

class NumberExpression extends Expression {
def value;
def accept(visitor) { visitor.visitNumberExpr(this); }

}

class OperationCounterVisitor {
def countPlus, countNumber;

def visitPlusExpr(node) {
this.countPlus++;
node.left.accept(this); node.right.accept(this);

}

def visitNumberExpr(node) { this.countNumber++; }
}COP ’16 TiTech / HPI July 19, 2016 22 / 28



Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
COP Implementation: Example

Expr

-value

NumberExpr

-left
-right

PlusExpr

-left
-right

MultiplyExpr

• A visitor is an object that
provides partial methods
for new operations

• Partial methods can call
visitor methods on other
objects directly

-countPlus
-countMultiply

+NumberExpr.visit()
+PlusExpr.visit()
+MultiplyExpr.visit()

OperationCounterVisitor

def PlusExpr.visit() {
    thisLayer.countPlus++;
    left.visit();
    right.visit();
}
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Visitor
COP Implementation: Example

def treeRoot = /* ... */
def visitor = new OperationCounterVisitor();

// Activate visitor in a block scope
with (visitor) {
def result = treeRoot.visit();

}
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Visitor
COP Implementation: Consequences

Composability: Potential name clashes between simulataneouly
activated visitors (but visitors can use different method names)
Simple Object Interaction: No double dispatch necessary
Dynamic Adaptation: Classes do not have to provide accept
methods
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Classes as Layers: Rewriting Design Patterns with COPI Summary

Summary

• Classes as Layers: Partial methods are members of classes and
classes are instantiable

• COP Implementation of Design Patterns
− Decorator: layer instance with partial methods for decorated methods
− Observer: layer instance with partial methods for methods triggering

state changes
− Visitor: layer instance with partial methods for new operations

• Design patterns are not mere refactorings and have different semantics
• Future work: Implementation, analysis of other GoF design patterns,
language features (e.g., partial method visibility), performance
optimizations
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Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

• Design Patterns: How can we write an abstract visitor?
• Language Semantics: What happens if we override a partial
method?

• 3 Dimensions: Receiver class inheritance, layer inheritance, layer
composition
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Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Visitor
Overwriting Partial Methods: Layer Subclassing

class Evaluator
def PlusNode.visit() {
return left.visit() + right.visit();

}
}

class ModEvaluator extends Evaluator {
def modulo;

ModEvaluator(def modulo) {
this.modulo = modulo;

}

@override
def PlusNode.visit() {
return super.visit() % thisLayer.modulo;

}
}
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Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Visitor
Overwriting Partial Methods: Polymorphic Overriding

class SomeVisitor
def Node.visit() {
return /* ... */

}

@override
def PlusNode.visit() {
return super.visit() + /* ... */ ;

}
}
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Visitor
Overwriting Partial Methods: Layer Composition

class SomeVisitor
def Node.visit() {
return /* ... */

}
}

class AnotherVisitor
def Node.visit() {
return super.visit() + /* ... */ ;

}
}

with (new Visitor()) {
with (new AnotherVisitor()) {
node.visit();

}
}
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Method Lookup

active layer

su
p
e
rc

la
ss

 h
ie

ra
rc

h
y
 o

f 
la

y
e
r

First layer hierarchy,
then next class in layer
composition.

COP ’16 TiTech / HPI July 19, 2016 34 / 28



Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

active layer

su
p
e
rc

la
ss

 h
ie

ra
rc

h
y
 o

f 
la

y
e
r

su
pe

rc
la

ss
 h

ie
r. 

of
 re

cv
.

First layer hierarchy,
then next class in layer
composition, then next
class in receiver hierar-
chy.

COP ’16 TiTech / HPI July 19, 2016 35 / 28



Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

Expr

BinaryExpr

PlusExpr

AbstrVisitor | BinaryExpr

OperationCounterVisitor

| BinaryExpr

AbstrVisitor | PlusExpr

OperationCounterVisitor

| PlusExpr

LayerHierarchy(L,C ) =∑#L
i=0〈super i (L)[C ]〉

ClassLayers(C ) =(∑|S|
i=1 LayerHierarchy(S [i ],C )

)
+

〈C 〉

Effective(C ) =∑#C
i=0 ClassLayers(super

i (C ))
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