
Classes as Layers: Rewriting Design Patterns with COP
Alternative Implementations of Decorator, Observer, and Visitor

Matthias Springer Hidehiko Masuhara Robert Hirschfeld

Dept. of Mathematical and Computing Science, Tokyo Institute of Technology
Hasso Plattner Institute, University of Potsdam

July 19, 2016

Classes as Layers: Rewriting Design Patterns with COP

Overview

Introduction

Classes as Layers

Design Patterns

Summary

COP ’16 TiTech / HPI July 19, 2016 2 / 28

Classes as Layers: Rewriting Design Patterns with COPI Introduction

Introduction

• Related Work: Instantiable layers in JCop [1] etc., previous work on
COP-based class extensions [2]

• Idea: Unify classes and layers; partial methods are defined as part of
classes (i.e., classes can acts as layers)

• This presentation: How to rewrite Decorator, Observer, Visitor [3] to
take advantage of that

− Pattern description
− Traditional implementation example
− COP implementation example
− Benefits and disadvantages

• Not mere refactorings, but rewritings: changed semantics

COP ’16 TiTech / HPI July 19, 2016 3 / 28

Classes as Layers: Rewriting Design Patterns with COPIClasses as Layers

Overview

Introduction

Classes as Layers

Design Patterns

Summary

COP ’16 TiTech / HPI July 19, 2016 4 / 28

Classes as Layers: Rewriting Design Patterns with COPIClasses as Layers

Language Design

• Classes can have 4 different kinds of methods:
− Member method (instance method)
− Member partial method (partial method defined for instances)
− Static method (class method)
− Static partial method (partial method defined for class)

• Arbitrary objects can be (de)activated (no dedicated layer construct)
− Global activation
− Block scope activation
− Per-object activation [4]

• Object providing partial methods: layer object
• Object(s) being adapted: affected object(s)

COP ’16 TiTech / HPI July 19, 2016 5 / 28

Classes as Layers: Rewriting Design Patterns with COPIClasses as Layers

Language Design
Example

class T { /* target class */
def foo() { /* ... */ }
def bar() { return "T"; }

}

class L { /* layer class */
def T.foo() {
thisLayer.bar(); /* –> "L" */
this.bar(); /* –> "T" */

}

def bar() { return "L" }
}

new L().activate(); /* global activation */
new L().activate(new T()); /* per-object activation */
with (new L()) { /* ... */ } /* block scope activation */

COP ’16 TiTech / HPI July 19, 2016 6 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Overview

Introduction

Classes as Layers

Design Patterns

Summary

COP ’16 TiTech / HPI July 19, 2016 7 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Pattern Description

+ =

• Purpose: Adding/removing responsibilities to an object at runtime
• Mechanism: Wrapping the object in a decorator, using the decorator
instead of the object from now on

• Problem: References to the original object are not affected

COP ’16 TiTech / HPI July 19, 2016 8 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Example

top

right

bottom

left

• Example: Game with 2D
grid (consisting of fields)

• Fields connected with
adjacency lists

• Would like to ensure that
references point to
decorated fields

COP ’16 TiTech / HPI July 19, 2016 9 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Example

top

right

bottom

left

• Example: Game with 2D
grid (consisting of fields)

• Fields connected with
adjacency lists

• Would like to ensure that
references point to
decorated fields

COP ’16 TiTech / HPI July 19, 2016 9 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
Traditional Implementation: Example

class Field {
def left, right, top, bottom;
def draw() { /* ... */ }
def enter(entity) { /* ... */ }
def neighbors() { /* ... */ }

}

class BurningFieldDecorator {
def decoratee;
def damage = 15;

def draw() { /* ... */ }

def enter(entity) {
entity.health -= damage;
decoratee.enter(entity);

}

def neighbors() { return decoratee.neighbors(); }
}COP ’16 TiTech / HPI July 19, 2016 10 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Example

-left : Field
-right : Field
-top : Field
-bottom : Field

+draw()
+enter(entity)

Field

-damage

+Field.draw()
+Field.enter(entity)

BurningFieldDecorator

def Field.enter(entity) {
 entity.health -= thisLayer.damage;

proceed(entity);
}

• A decorator is an object that provides partial methods for
additional/modified behavior

• Partial methods can call proceed to invoke next/original method

COP ’16 TiTech / HPI July 19, 2016 11 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Example

def field = /* ... */
def decorator = new BurningFieldDecorator();

// Active decorator on object field
decorator.activate(field.left);

// Call decorated method
def moveLeft() {
def player = /* ... */
field.left.enter(player);

}

COP ’16 TiTech / HPI July 19, 2016 12 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Example

def field = /* ... */
def decorator = new BurningFieldDecorator();
def anotherDecorator = new MineFieldDecorator();

// Active decorator on object field
decorator.activate(field.left);
anotherDecorator.activate(field.left);

// Call decorated method
def moveLeft() {
def player = /* ... */
field.left.enter(player);

}

COP ’16 TiTech / HPI July 19, 2016 12 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Decorator
COP Implementation: Consequences

Method calls within an object (this calls) are affected
Is that a bad thing if we layer only public methods?
Partial methods rely on static types for target class (i.e.,
BurningFieldDecorator can only layer Field objects)
→ Do we need wildcard class names? (*.enter(entity))
No “object schizophrenia”

COP ’16 TiTech / HPI July 19, 2016 13 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
Pattern Description

event

notify

• Purpose: Reacting to state changes/events of a dependent object
• Mechanism: Maintaining a list of observers, notifying all observers
about state changes/events

• Problem: All observers are notified about all state changes/events
• Problem: Difficult to pass information about different events
• Problem: Troublesome to observe all instances of a class

COP ’16 TiTech / HPI July 19, 2016 14 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
Example

• Application with login, register functionality: class UserManager
• LoginMonitor: listens to login attempts
• SecurityMonitor: listens to failed login attempts and new user
registrations

COP ’16 TiTech / HPI July 19, 2016 15 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
Traditional Implementation: Example

class UserManager {
def observers = new List();
def notify(type, data) {
for (def o in observers) {
o.update(type, data);

}
}

def checkCredentials(user, pass) {
notify("login", user)
if (wrongPass) {
notify("failed_login", user);

}
}

def createAccount() {
notify("create_acc", null);

}
}

class SecurityLog {
def update(type, data) {
if (
type == "failed_login" ||
type == "create_acc") {
/* ... */

}
}

}

class LoginMonitor {
def update(type, data) {
if (type == "login") {
/* ... */

}
}

}

COP ’16 TiTech / HPI July 19, 2016 16 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Example

ConcreteUserManager

+checkCredentials(user, pass)
+createAccount(user, pass)
+setPermissions(user, perm)

<<Interface>>
UserManager-chart

+UserManager.checkCredentials(u, p)

LoginMonitor

-log

+UserManager.createAccount(u, p)
+UserManager.checkCredentials(u,p)

SecurityLog

• An observer is an object that provides partial methods for methods
indicating state changes/events

• Partial methods immediately call proceed and handle event

COP ’16 TiTech / HPI July 19, 2016 17 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Example

class SecurityLog
def UserManager.checkCredentials(user, pass) {
if (!proceed(user, pass)) {
/* ... */

}
}

}

def userManager = /* ... */
def loginMonitor = new LoginMonitor();
def securityLog = new SecurityLog();

// Activate observer on object userManager
loginMonitor.activate(userManager);

// Activate observer on all UserManager implementation objects
securityLog.activate();

COP ’16 TiTech / HPI July 19, 2016 18 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Observer
COP Implementation: Consequences

Less Flexibility: Notifications only before or after method calls, but
not inside (less flexibility)
Modularity: Potentially tighter coupling between subject and observer
(binding observer to method names of subjects)
Argument Passing: Every partial method can have its own signature
Notification Levels: Observers can listen to different events
Group Observation: Observers can listen to all objects of a class
Dynamic Adaptation: Subject does not have to implement an
interface

COP ’16 TiTech / HPI July 19, 2016 19 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
Pattern Description

accept

visit*
accept

visit*

visit*

(visitor)

(object
structure)

• Purpose: Adding new operations to a family of classes
• Mechanism: Separate visitor class, back-and-forth interaction (double
dispatch) between objects and visitor

• Problem: Complex object interaction (double dispatch)

COP ’16 TiTech / HPI July 19, 2016 20 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
Example

Expr

-value

NumberExpr

-left
-right

PlusExpr

-left
-right

MultiplyExpr

COP ’16 TiTech / HPI July 19, 2016 21 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
Traditional Implementation: Example

class PlusExpression extends Expression {
def left, right;
def accept(visitor) { visitor.visitPlusExpr(this); }

}

class NumberExpression extends Expression {
def value;
def accept(visitor) { visitor.visitNumberExpr(this); }

}

class OperationCounterVisitor {
def countPlus, countNumber;

def visitPlusExpr(node) {
this.countPlus++;
node.left.accept(this); node.right.accept(this);

}

def visitNumberExpr(node) { this.countNumber++; }
}COP ’16 TiTech / HPI July 19, 2016 22 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
COP Implementation: Example

Expr

-value

NumberExpr

-left
-right

PlusExpr

-left
-right

MultiplyExpr

• A visitor is an object that
provides partial methods
for new operations

• Partial methods can call
visitor methods on other
objects directly

-countPlus
-countMultiply

+NumberExpr.visit()
+PlusExpr.visit()
+MultiplyExpr.visit()

OperationCounterVisitor

def PlusExpr.visit() {
 thisLayer.countPlus++;
 left.visit();
 right.visit();
}

COP ’16 TiTech / HPI July 19, 2016 23 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
COP Implementation: Example

def treeRoot = /* ... */
def visitor = new OperationCounterVisitor();

// Activate visitor in a block scope
with (visitor) {
def result = treeRoot.visit();

}

COP ’16 TiTech / HPI July 19, 2016 24 / 28

Classes as Layers: Rewriting Design Patterns with COPIDesign Patterns

Visitor
COP Implementation: Consequences

Composability: Potential name clashes between simulataneouly
activated visitors (but visitors can use different method names)
Simple Object Interaction: No double dispatch necessary
Dynamic Adaptation: Classes do not have to provide accept
methods

COP ’16 TiTech / HPI July 19, 2016 25 / 28

Classes as Layers: Rewriting Design Patterns with COPI Summary

Overview

Introduction

Classes as Layers

Design Patterns

Summary

COP ’16 TiTech / HPI July 19, 2016 26 / 28

Classes as Layers: Rewriting Design Patterns with COPI Summary

Summary

• Classes as Layers: Partial methods are members of classes and
classes are instantiable

• COP Implementation of Design Patterns
− Decorator: layer instance with partial methods for decorated methods
− Observer: layer instance with partial methods for methods triggering

state changes
− Visitor: layer instance with partial methods for new operations

• Design patterns are not mere refactorings and have different semantics
• Future work: Implementation, analysis of other GoF design patterns,
language features (e.g., partial method visibility), performance
optimizations

COP ’16 TiTech / HPI July 19, 2016 27 / 28

Classes as Layers: Rewriting Design Patterns with COPI Summary

References

[1] M. Appeltauer, R. Hirschfeld, J. Lincke. Declarative Layer Composition
with the JCop Programming Language. Journal of Object Technology,
Vol. 12, 2013

[2] M. Springer, H. Masuhara, R. Hirschfeld. Hierarchical Layer-based Class
Extensions in Squeak/Smalltalk. Modularity Companion 2016.

[3] E. Gamma, R. Johnson, R. Helm, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, 1994.

[4] J. Lincke, M. Appeltauer, B. Steinert, R. Hirschfeld. An open
implementation for context-oriented layer composition in ContextJS.
Science of Computer Programming, 2011.

COP ’16 TiTech / HPI July 19, 2016 28 / 28

Classes as Layers: Rewriting Design Patterns with COPI Summary

Appendix

COP ’16 TiTech / HPI July 19, 2016 29 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

• Design Patterns: How can we write an abstract visitor?
• Language Semantics: What happens if we override a partial
method?

• 3 Dimensions: Receiver class inheritance, layer inheritance, layer
composition

COP ’16 TiTech / HPI July 19, 2016 30 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Visitor
Overwriting Partial Methods: Layer Subclassing

class Evaluator
def PlusNode.visit() {
return left.visit() + right.visit();

}
}

class ModEvaluator extends Evaluator {
def modulo;

ModEvaluator(def modulo) {
this.modulo = modulo;

}

@override
def PlusNode.visit() {
return super.visit() % thisLayer.modulo;

}
}

COP ’16 TiTech / HPI July 19, 2016 31 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Visitor
Overwriting Partial Methods: Polymorphic Overriding

class SomeVisitor
def Node.visit() {
return /* ... */

}

@override
def PlusNode.visit() {
return super.visit() + /* ... */ ;

}
}

COP ’16 TiTech / HPI July 19, 2016 32 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Visitor
Overwriting Partial Methods: Layer Composition

class SomeVisitor
def Node.visit() {
return /* ... */

}
}

class AnotherVisitor
def Node.visit() {
return super.visit() + /* ... */ ;

}
}

with (new Visitor()) {
with (new AnotherVisitor()) {
node.visit();

}
}

COP ’16 TiTech / HPI July 19, 2016 33 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

active layer

su
p
e
rc

la
ss

 h
ie

ra
rc

h
y
 o

f
la

y
e
r

First layer hierarchy,
then next class in layer
composition.

COP ’16 TiTech / HPI July 19, 2016 34 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

active layer

su
p
e
rc

la
ss

 h
ie

ra
rc

h
y
 o

f
la

y
e
r

su
pe

rc
la

ss
 h

ie
r.

of
 re

cv
.

First layer hierarchy,
then next class in layer
composition, then next
class in receiver hierar-
chy.

COP ’16 TiTech / HPI July 19, 2016 35 / 28

Classes as Layers: Rewriting Design Patterns with COPIMethod Lookup

Method Lookup

Expr

BinaryExpr

PlusExpr

AbstrVisitor | BinaryExpr

OperationCounterVisitor

| BinaryExpr

AbstrVisitor | PlusExpr

OperationCounterVisitor

| PlusExpr

LayerHierarchy(L,C) =∑#L
i=0〈super i (L)[C]〉

ClassLayers(C) =(∑|S|
i=1 LayerHierarchy(S [i],C)

)
+

〈C 〉

Effective(C) =∑#C
i=0 ClassLayers(super

i (C))

COP ’16 TiTech / HPI July 19, 2016 36 / 28

	Introduction
	Classes as Layers
	Design Patterns
	Summary

