CSE 202 Homework 1 Matthias Springer, A99500782 1

Problem 1

Notation a <> b means that a is matched to b. a <, ¢ means that b likes
¢ more than a. Equality indicates a tie.

Strong instability

Yes, there does always exist a perfect matching without a strong instability.

Intuition We can resolve ties by ordering the persons involved arbitrarily.
[.e. when m, and msy are tied for wy, we can just assume that w; likes m;
better than ms. Since m; and my were tied before, w; will never complain
about our choice. The Gale-Shapley algorithm could then be run without
modifications and is guaranteed to return a perfect stable matching.

Proof We show that the Gale-Shapley algorithm always generates a perfect
matching without a strong instability, even if there may be ties. We will prove
this by contradiction.

We make a small modification to the algorithm: if there are multiple
choices for a woman to propose to a man (because there are multiple men
that she likes best), she randomly proposes to one.

Also, note that men do not switch for a women that are tied with the
current partner.

e We assume, that the output of the algorithm contains a strong insta-
bility. L.e. m; <> wy and wy <> wsy, but my <,,, me and we <, wy.

e Therefore, w; must have proposed to ms before she proposed to m;?.
e my <> wi, so one of the following must be true.

— my already had a better partner w;. Eventually, msy switched for
wy. Therefore, wy >, w; >m, ... >m, wi. This violates our
assumption that we <,,, ws.

— mgy accepts wq, but eventually switches to ws. Therefore, there
must be women, including ws, that my likes better. Therefore,
Wo Zpmy Wi >my, .. >m, Wi. This violates our assumption that
Wa <m2 w1.

Lm and my are not tied (see assumption).

CSE 202 Homework 1 Matthias Springer, A99500782 2

— Note that w; and wy cannot be tied, since this would not impose
a strong instability.

e Our assumption is wrong. There can be no strong instability.

Weak instability

No, there is not always a perfect matching without a weak instability. We
show this by providing an example in which all perfect matchings have a
weak instability.

W1 =m; W2
W1 =my W2
My >y M2
M1 >, M2
We examine the two possible matchings.

e m; <> wy; and my <> wy contains a weak instability: ws likes m; more
than her current partner ms and m; does not care (both women are

tied).

e m; <> wy and my <> w; contains a weak instability: w; likes m; more

than her current partner my and m; does not care (both women are
tied).

Therefore, there does not always exist a perfect matching without a weak
instability.

Problem 2

For a woman, it is not possible to end up with a true better man by lying
about her preferences.

e Let w be a woman with the true preference m; >,, mo. Let us assume
that the Gale-Shapley algorithm creates my.;, <> w and that w pre-
tends that ms >fjﬁ my. We compare the results of the algorithm with
and without the lie.

CSE 202 Homework 1 Matthias Springer, A99500782 3

e Case 1: my < Mypy, and mo < My
Original proposing sequence: (..., Mypthy -, M1, .., Mo, .. .)
New proposing sequence: (..., My, -, Moy .., M, .. .)
Both m; and msy are actually and after lying lower on w’s preference
list than her matched partner my,.4;,. Therefore, w is matched to My
before and after the lie, because, in both cases, w does not even propose
to my or me, since she was matched with a better partner before and
he did not leave w?.

e Case 2: my > Mypyy, and mo > My
Original proposing sequence: (..., My, ..., Ma, ..., Myuthy - - -)
New proposing sequence: (..., ma, ..., M1, ..., Mypuin, - -)
Both m; and my are actually and after lying higher on w’s preference
list than her matched partner my.;,. Therefore, w is matched to M
before and after the lie, because, in both cases, w proposes to m; and
mo and both will either reject her or first accept her and leave her later.

— At some point, w proposes to msy. We know that w <> my., in
the first run of the algorithm, although w proposed to msy before.
Therefore, my either already had a better partner or he accepted
w and then switched to another woman. This will also happen
after lying, since w’s lie does not affect the proposing sequence of
the other women.

— The same argument holds true for m;.

e Case 3: my > My, and mo < My
Original proposing sequence: (..., My, ..., Mythy -, M2, .. .)
New proposing sequence: (..., Ma, ..., Myputhy -, M1, .- .)
When w lies, the following is true.

— w will not be matched with a man she proposed to before m.,
because these men eventually rejected her in the first run of the
algorithm.

— When w proposes to mso, he might accept her and stay with her.
In that case, w ends up with a worse partner than without lying.

— In case msy rejects w or leaves her later, w will propose to all men
until my.4, will eventually accept her and stay with her. All the

2In general, the ordering of men on w’s preference list below My, does not matter.

CSE 202 Homework 1 Matthias Springer, A99500782 4

men in between will reject her or leave her, because that is what
they did in the first run of the algorithm.

e Case 4: my < Mypy, and mo > My
Not possible, since m; < My < mo violates our assumption that
my > Ma.

e Case 5: My = Mypy, and my > My
Original proposing sequence: (..., My, ..., Myyin, - -)
New proposing sequence: (..., My, -, M1, - .)
w changes the ordering in such a way that she proposes to her matched
partner earlier and to a better partner later. my.,.,’s predecessors will
(eventually) reject w, but my., will accept w and stay with her, since
he did not get a better proposal in the first run.

e Case 6: My = My, and my < My
Not possible, since m; < msy violates our assumption that m; > ms.

e Case 7: m1 = Mypy, and mo < My
Original proposing sequence: (..., Mypip, - -, M2, .. .)
New proposing sequence: (..., Moy ..., Myputh, - - -)
All men before my will reject w’s proposal or leave her later, since that
is what they did in the first run. w proposes to ms before she proposes
t0 Myrun- Mo might accept her proposal and stay with her. In that case,
w ended up with a worse partner. In case ms rejects her (eventually),
w will propose to all men between ms and my,.,. These men will reject
her, because they did the same in the first run. My, will accept w
and stay with her.

e Case 8: m; = Mypy, and mo = My
w did not lie.

In every case, w did either end up with the same partner again or get a
worse partner. Therefore, w cannot improve her matching by lying.

CSE 202 Homework 1 Matthias Springer, A99500782 5

Problem 3

Summary

The key idea is to calculate all values F} together instead of separately. When
we take a look at the formula for Fj, we see that C' and C; are constants
that are multiplied with the two sums. The difficult part is to calculate
> i< (]z—z)g = isi OE—Z)Q efficiently. We can generate two polynoms Q(z) (for
the ¢;) and M(x) (for the denomiators) of less than degree 2n such that their
multiplication contains the values F;. This can be done efficiently with the
algorithm discussed in the lecture. Then we multiply every coefficient of the

resulting polynom with the constants C' and g;.

Basic Idea

e Calculate all F} together instead of separately.

e Generate polynoms

- Qz) =L, qia™
n—14+1 n—1—1i

- M) =30 T+ T

e Calculate F(z) = Q(z) - M(x) using the algorithm discussed in the
lecture. Degree of both polygons is less than 2n. Runtime O(2n log 2n).

e Extract coefficients F; = f; from F(x) at positions j = 2n — 1 — i for
t=1...n.

Full Algorithm

We can rewrite [as follows.

O G g
h=c <Z<j—z'>2 Z(j—z‘)Q)

1<j 1>7

Now, we geneate the polynoms @Q(x) and M (x) as presented in the pre-
vious section. For instance, for n = 4, we generate the following polynoms.

Qz) = G’ + @1’ + @gr+

CSE 202 Homework 1 Matthias Springer, A99500782 6

I 4 154 4 5 1 1
M(x)——éx g8 +x +Zm+§

We use the method discussed in the lecture to multiply these two poly-
noms. For polynoms of degree m this takes O(mlogm) time. deg(Q(z)) =
n —1 and deg(M(x)) =2 (n — 1) < 2n. Therefore, the multiplication takes
O(2nlog2n) time.

Note: the algorithm for multiplying two polynomials was designed for
polynoms whose degree is a power of 2. Therefore, we might have to extend
the polynoms, resulting in a polynom of degree 2n. Therefore, the multipli-
cation takes O(4nlogdn) = O(nlogn) time.

For the multiplication, we assume that (x) has the same degree as M (x)
by adding the missing powers of z with a coefficient of zero (e.g. 0x° in the
example). We also add missing powers of z inside M(x) (e.g. 0z in the
example).

44

Pl p -+t G T+

The example above shows only the coefficients of 2% with k =3...6. In
general, we are interested only in the coefficients of 2* with k = 2n — 1 — i
and i = 1...n. The other coefficients are calcuated by the algorithm, but
we do not need them.

We can now generate the term F; = C - ¢; - c2,—1—j, Where ¢; is the
coefficient of z* in M (x) - Q(z). This requires O(n) multiplications in total.

Pseudo Code

n < Q.size()
M <« Array[2n — 1]
result <— Array|[n|
for i =1 ton do
Mn —1+1i] « i
Mn—1—i] « —i?
end for
d «— 9[logy deg M1
Q) < @ with d coefficients (fill with zeros)

CSE 202 Homework 1 Matthias Springer, A99500782 7

M < M with d coefficients (fill with zeros)
p < mult(M, Q)
for i =1 ton do

result[i — 1] = p[2n — 1 — i]

end for

return result

Runtime complexity

Generate polynom Q(x): O(n)
Generate polynom M (z): O(2n)

Convert polynoms Q(z) and M (x) to polynom with same number of
coefficients, where the number of coefficients is a power of 2: O(4n)
each (next power of 2 might be almost 2n)

Multiply polynoms (using FFT): O(4nlog4n)

Extract coefficients from resulting polynom: O(n)

Therefore, the runtime complexity is O(4nlogdn) = O(nlogn).

Problem 4

Basic Idea

e Given an arbitrary starting vertex, a local minimum is the end of a

decreasing path, i.e. every next vertex is smaller than the current
vertex.

e [ind the smallest vertex v in the middle column.

e Check if this smallest vertex is a local minimum. If not, there must

be a local minimum on that side of the column where v’s (left/right)
neighbor is smaller than v (could be both sides). A smallest path
starting from v’s neighbor will never cross this column.

e [ind the smallest vertex w in the middle row of the side that we chose

in the last step.

CSE 202 Homework 1 Matthias Springer, A99500782 8

e Check if w is a local minimum. If not, there must be a local minimum

inside the quarter sector containing v’s chosen neighbor if w > v. Oth-
erwise, there must be a local minimum in the quarter sector where w’s
(upper /lower) neighbor is smaller than w.

e We continue recursively on a smaller grid.

Full Algorithm

1.

2.

Find cell ([27,7), 1 <i <n that has a minimal value T2 -

Check ([2],i)’s neighbors. If they are both greater than T[4, We
return the local minimum.

Otherwise, there must be a local minimum on the side that contains
the neighbor vertex P that has a smaller value than xfay,;. If both
neighbors have a smaller value, then both sides contain a local mini-
mum and we may choose P arbitrarily.

Proof: Starting with a vertex of value x;, we can find a local mini-
mum by choosing a neighbor that has a smaller value z; < z;. We
must eventually reach a local minimum, because all values z; are dis-
tinct. Therefore, there must always be a smaller neighbor or, in case
we reached the local minimum, all neighbors are greater. The path we
consider right now starts at P with a value that is smaller than za ;.
This xp is smaller than the smallest number of the column. We can
be sure that this (decreassing-value) path will never cross this column
again. Otherwise, the path would hit a greater value, since all vertices
on the column have a greater number than zp.

Find cell (j,[2]), with 1 < j < [2] —1 if we just chose the left side, or
otherwise [§] 4+ 1 < j < n (if we chose the right side), such that x; 2,
is minimal.

Check (j, [g})’s neighbors. If they are both greater than w;ny, we
return the local minimum.

. We compare 21, and ;2.

a) If xrny; < x;r27, then the path starting at P will not cross the
EAD 351 g
row, because all vertices on the row have a greater value than the

CSE 202 Homework 1 Matthias Springer, A99500782 9

xp. Therefore, we know that there must be a local minimum in
the (square) sector that contains P. We continue the algorithm in
that sector recursively. The new sector’s size is equal to or smaller
than [§] x [§].

(b) If 2y, > a1, then we take one of (4, [27)’s neighbors whose
value is smaller than x; 21 and call it Q3. We know that the path
starting from () will cross neither the half-row nor the column
(same reason as in the proof above). Therefore, we know that
there must be a local minimum in the (square) sector that contains
. We continue the algorithm in that sector recursively. The new

n

sector’s size is equal to or smaller than [5] x [F].

e n = 1 is the base case for the recursion. In that case, the grid consists
of only one cell that must be a local minimum.

Pseudo Code

This is the pseudo code for findMin(G, n), where G is the grid graph and n
is its size in one dimension.

if n =1 then > base case
output(1,1) > keep track of acutal indices, see comment below
end if
Cx < [5]
Cp ¢ 00
fori=1 to ndo
x < Gleg, 1
if x < ¢, then > step 1
Co T
Cy <1
end if
end for
n — Gle, — 1, ¢,
n, < Gley + 1, ¢,
if n; > x An, >z then > step 2
output(c,, ¢,) > keep track of actual indices

3There must always exist such a vertex. Otherwise we would already have returned the
local minimum.

CSE 202 Homework 1 Matthias Springer, A99500782 10

else
direction, < —1 if n; < z else 1
end if
ry < [5]
Ty 4— 00
for i = [5] + directiong;i > 0 ANi < n+ 1,1 < i + direction, do
x 4 Gli, 1y
if x < r, then > step 4
Ty < T
Ty 1
end if
end for
Ny — Gry,ry — 1]
ng < Glry,ry + 1]
Ceng < 1 if Ny < x else n

if n, >z Ang > x then > stepb
output(ry, ry) > keep track of actual indices

else if ¢, < r, then > step 6a
Tena < 1 if ¢, < [5] else n

else > step 6b
Teng < 1 if ng < z else n

end if

return findMin(G[[5] : cenas [5] : Tendls [5])

2
In the pseudo code, Gla : b, ¢ : d] means that we copy the array rectangle

horizontally from index a to b and vertically from ¢ to d. The resulting array
begins at index 1. In the actual implementation of the algorithm, we would
not do this because it is too expensive. We can just provide the coordinates of
the new array segment that we are working on. The only reason for choosing
this way in the pseudo code is to keep it readable and understandable. In
the runtime complexity analysis, I will not account for copying the array.

It is also important to remember, that the output of the indices of the
pseduo code algorithm does not keep track of the actual indices. I.e. every
recursive call of the algorithm gets an array whose first element is at position
(1,1), although the real position of this first element might be something else
(because it was copied in the example in order to keep the pesudo code free
of index number crunching).

All out-of-bounds accesses will return co. Le. G[0,2] = G[n + 1,1] = .

CSE 202 Homework 1 Matthias Springer, A99500782 11

Runtime complexity

e We assume that the grid G is a square grid with a height and length
of n.

e Finding the minimum of G’s middle column: n probes.

e Checking if the column’s minimum is a local minimum: 2 probes.

e Finding the minimum of the middle column: [4] —1 = O(n) probes®.
e Checking if the row’s minimum is a local minimum: 2 probes.

e We need O(n) probes per recursion/conquer step. Every divide step
divides n by half®. Therefore this is the runtime complexity for the al-
gorithm: T'(n) = T'(5) +O(n). The base case takes a constant amount
of time (7'(1) = ¢) We can show that T'(n) = O(c - n) by using the
recursion tree method. Every level contains exactly one problem and
the problem size is cut in half on every next level. Therefore, the prob-
lem complexity can be described by the decreasing geometric series:

T(n) = zliozgln 027 S Co - n.6

Therefore, the runtime complexity of the algorithm is O(n).

Problem 5

Basic Idea

e We sort all lines by their slopes.

e We use divide-and-conquer and generate two equal-sized subproblems
by splitting the lines in the middle. Note, that the sorting is preserved.

e The algorithm is supposed to return the envelope that contains the
visible lines only.

4Remember that we already split the grid vertically at this point

5Tf the n is odd, we take [5]. This does not affect the runtime complexity asymptoti-
cally.

6We can assume that it is an infinite decreasing geometric series.

CSE 202 Homework 1 Matthias Springer, A99500782 12

e In the conquer step, we take two envelopes and combine them. There-
fore, we find the single intersection point of the envelopes and from
there on, we take the line segments that are on top. Before, we take
the line segments from the other envelope. The intersection point can
be found in linear time with a scan line algorithm that begins at —oo
and stops at the beginning of every new line segment in either one of
the two envelopes.

Full Algorithm

e The algorithm gets an array of line equations as input, and the line
equations must already be sorted by their slope value. If that is not
the case, this can be done in a preprocessing step in O(nlogn) if n is
the number of line equations.

e The algorithm returns a list of visible line equations and their inter-
section points. Together, these form line segments, where each line
equation is only used between the two intersection points with the pre-
decessor and the successor line equation. Note, that the left-most and
the right-most lines have only one intersection and go to —oo and oo
respectively.

e We divide the list of equations in the middle and work on both list
recursively (divide and conquer).

e The conquer step works as follows.

— We need to merge the two sequences of line segments (also called
envelopes) by finding their intersection point and creating one
single list of line segments. During this step, some of the lines

might become invisible and are therefore discarded. This can be
done in O(n).
— Let A be the line segments from the first recursive divide call and

B be the line segments from the second recursive divide call.

— At some point, a segment from A might intersect with a segment
from B. At that point, we combine A and B by saving the in-
tersection point and taking all previous line segments from A and

CSE 202 Homework 1 Matthias Springer, A99500782 13

taking all following line segments from B, if A was on top before
and B is on top later”.

— Note, that there can only be one single intersection of A and B,
because A and B are sorted by their slopes and all slopes in A
are lower than all slopes in B. If there were a second intersection
point, the two envelopes had to intersect a second time. Therefore,
A’s or B’s slopes would have to decrease again or A’s slopes would
have to become greater than a slope in B. This contradicts the
fact, that A and B are sorted.

— We can merge both envelopes in linear time by using a scan line al-
gorithm. We start at x = —oo and determine the value of the first
line equation in both envelopes®. By doing this, we know which
of the two envelopes is on top. Then we move to the next closest
intersection point (on the x-axis) in the two envelopes’. Note,
that the slope of an envelope can only change at these intersec-
tion points. We evaluate the other envelope at this intersection
point!?. If from now on, the other line segments/the other enve-
lope are on top (e.g. before, A was on top, but now B is on top)'!,
then A and B intersect and we combine them as described before.
We return the combined envelopes.

Runtime Complexity
e Sorting by slopes: O(nlogn)
e Scan line algorithm for combining two envelopes (conquer step): O(n)

)+ O(n) and
= O(nlogn).

e Full recursion with divide and conquer: T'(n) = 2 - T'(
the base cases T'(1) = T'(2) = const. We know that T'(n

~o3

Therefore, the overall runtime complexity is O(nlogn).

"Otherwise, we take all previous line segments from B, add the intersection point, and
take all following line segments from A.

8Note, that the first equation does not have an intersection point to its left.

9Both envelopes have different intersection points and we do not care where the inter-
section point comes from.

0We know the segments of the other envelope and where they begin and end.

11 We have to evaluate both envelopes.

