CSE 202 Homework 2 Matthias Springer, A99500782 1

Problem 1

Subproblem a

Let us consider that there is a negative cycle C. Every edge has a weight of

Wij =T Cij — Py

= Z r-cm-—pj<0

(3,7)€C
:>T'ZCi7j—ij<0
(3,5)€C (3,5)€C
=Ty < ) D

(i,5)€C (3,7)eC

- Z(z‘,j)ec pj

=T
Z(i,j)EC Cij

= found a cycle with a bigger ratio than r
=rf>r

Subproblem b
Let us consider that there is no negative cycle, i.e. all cycles are positive.
= V(O € cycles : Z r-ci;—p; >0
(i,5)eC
Z(z’,j)EC bj
Z(i,j)eC Cij
i,jyec Pi
ce cycles Z(m—)ec ¢, j)

= VC € cycles: r >

= even the greatest (value) cycle is smaller than r

=rt<r



CSE 202 Homework 2 Matthias Springer, A99500782 2

Subproblem c

Basic Idea

Find r* with an accuracy of € by doing binary search. Let r be the
current guess.

R = max; j)ek cp—J is an upper bound for 7*, because using an additional
2V
edge can only make the ration bigger.

Generate the weights for the graph with r.
Run Bellman Ford to determine if there is a cycle with negative weight.

— Run Bellman Ford.

— If the shortest path to any vertex can be further reduced by taking
an arbitrary edge, then the graph contains a negative cycle.

— After running the outer loop n times, we know the minimal path
length for every vertex.

— After running the outer loop n more times, we can be sure that,
for every vertex in a negative cycle, its predecessor points to the
predecessor of the the vertex in the negative cycle.

— Extract the negative cycle by following the predecessor pointer
starting from the vertex the was most recently decreased.

If a negative cycle is found, try a bigger value in the binary search,
otherwise a smaller value.

Runtime: O(log £) times runtime of Bellman Ford.

By running Bellman Ford for every SCC, we can deal with non-connected
graphs.

Pesudocode: General Algorithm

The input for the algorithm is a directed graph G. The values ¢; ; and p; are
considered part of the graph description G. The output is a cycle, i.e. a list
of vertices.

r+— R
left <0



CSE 202 Homework 2 Matthias Springer, A99500782 3

C+0
while r — left < e do
C' < NegativeCycle(G, )
if C =0 then
else
left =
end if
end while
if C = () then
r < max{0,r — €}
if »r =0 then
return FindCycle(Q)
else
return NegativeCycle(G, )
end if
end if

Pseudocode: Finding Negative Cycle

The basic idea of of the Bellman Ford algorithm was taken from Wikipedia. n
is the number of vertices inside the current SCC. The input for the algorithm
(NegativeCycle) is a directed graph G and a value r.
for all (V,E) € SCC(G) do
d[v] <~ oo Vv e V
d[Ul] +0
foundNegClycle < false
for k + 1 to 2n do
for all (i,75) € E' do
W 5 < TCij — Dj
dj] < d[i] + w;
prelj] =i
lastDecrease < j
if £ > n then
foundNegCycle < true
end if



CSE 202 Homework 2 Matthias Springer, A99500782 4

end if
end for
end for
if foundNegCycle then
v < prellastDecrease]
L < new List
L.add(lastDecrease)
while v # lastDecrease do
L.add(v)
v prelv]
end while
return L
end if
end for
return ()

Proof

General Algorithm We use binary search in order to find an approxima-
tion of r*. We know that R = max; j)e C —L is an upper bound for r*, because
R’s ratio is the maximum ratio among all edges. When we form a cycle by
adding other edges to R’s edge, this ratio cannot become bigger, since we
only add edges whose ratio is equal or smaller. When we add an edge with
a lower ratio, the overall ratio of the set of edges will become smaller.

The binary search ensures that we always take a look at smaller values
of r if we did not find a negative cycle and bigger values of r otherwise. In
subsections a and b, we showed that this is the correct way to get closer to
r*.

We can end the binary search, when the difference of the previous value
of r — left < e. In this case, r* is contained within an interval of size less
than e. If C' # 0, we found a negative cycle, therefore r(C') < r* (proof:
subsection a) and r* — r(C) < e. Therefore, r(C) > r* —e.

In case C' = ), we did not find a negative circle. Therefore, for every
circle C, r > r*, but r — r* < e. Therefore, r — € is a valid approximation of
r*, because r* — (r—e) < e. In case, r—e < 0, 7 = 0 is a valid approximation.
In that case, all profits are zero, r* = 0, and every circle C' is a valid result.
In this case, we just have to find a circle in a directed graph.



CSE 202 Homework 2 Matthias Springer, A99500782 5

Find Negative Cycle The starting vertex for the algorithm can be chosen
arbitrarily, since we are not really interested in the real distance values of
the vertices. We just want to find negative cycles. In case the graph is
not connected, we have to run the algorithm for every strongly connected
component (SCC). We can find SCCs using Tarjan’s algorithm efficiently
(see Wikipedia for description of the algorithm and its runtime). For every
SCC, we can choose the starting point arbitrarily from the set of vertices of
the SCC. By searching for a negative cycle in every SCC, we can be sure to
find a negative cycle in the whole graph if one exists.

The first n runs of the outer loop (variable k), correspond to the standard
Bellman Ford algorithm. We know that after that, each vertex’s distance
value is equal to the vertex’s real distance from the starting point or maybe
even smaller (in case there is a negative cycle). If there is a negative cycle
in the current SCC, in every subsequent run of the outer loop, a distance
value of a vertex inside a negative cycle is decreased. If we do not decrease a
vertex distance value after the first n runs, we can be sure that there is not
negative cycle. Otherwise, we would be able to decrease the distance values
of the vertices inside the cycle by looping inside the cycle multiple times.

By running the loop n more times, we can be sure that we keep decreasing
the distances values of vertices of negative cycles. After n runs, we can be
sure that we decreased the distance value of every vertex inside every negative
cycle. This is true, because we can always find a shorter path for a vertex
v; inside a negative cycle, if v;’s predecessors distance value was decreased.
Therefore, the predecessor pointer of every vertex inside a negative cycle
points to the actual predecessor in the negative cycle. In the worst case, the
whole SCC is one big negative cycle. After n runs, all vertices were updated,
because n is the number of vertices and in every run of the loop we updated
at least one vertex inside a negative cycle.

Runtime

e Steps of the binary search starting from R with an accuracy of e:
O(log R —loge) = O(log £)

e Finding all SCCs with Tarjan’s algorithm: O(|V|+ |E|). |V|* is an
upper bound for |E|.

e Finding a negative cycle inside an SCC with the modified Bellman Ford
algorithm: the outer loop runs 2|V| times, and the inner loop iterates



CSE 202 Homework 2 Matthias Springer, A99500782 6

over all edges. In addition, we have to reconstruct the loop by taking
a look at the predecessors of the vertex that was decreased for the
last time. This can be no more than |V| vertices. |V|? is an upper
bound for |E| (in case there is an edge between every pair of vertices).
OQIVIIE] +[V]) = O(VIIE]) = O(IV).

The total runtime is O(log £ - [V|? - [V]?) = O(log £|V .

Problem 3

Basic Idea

For a tree to have zero skew, its two subtrees must both have zero skew.

The algorithm works bottom up: for every tree, run the algorithm
recursively on its two subtrees. On the lowest level, a node has leaves
a and b. Increase arg min,cr, 1y l;, such that I, = lp.

If the two subtrees A and B with the edges e(A) and e(B) pointing to
them have zero skew, increase arg min,e 4 gy h(4) + le(iy, where A(T') is
the length of the root-to-tree path of tree T

In both cases, increase the edge by the absolute difference (between A
and B) of the sum of the complete height of the subtree plus the length
of the edge pointing to the subtree.

Pseudocode

The psuedocode shows the function zeroSkew whose input is the node T' (root
of the tree). We denote the child nodes of 7" with A and B. Iz 4 is the length
of the edge between T and its child node A. We consider a node with only
one child node to be zero skew. Such a child node must be a leaf, because
the binary tree is complete.

if T has no children then

return 0

else if T" has only one child A then

return zeroSkew(A) + lp,

end if
ha < zeroSkew(A)



CSE 202 Homework 2 Matthias Springer, A99500782 7

hp < zeroSkew(B)
dlﬁ < hA + ZT,A — hB — lT,B
if diff <0 then

ZT,A < lT,A — dlﬁ
else if diff > 0 then

lrg < lr g + diff
end if

return hy + Iy 4

Proof

We prove the correctness of the algorithm by induction. We prove that after
running zeroSkew(T'), the tree T has zero skew.

e We notice, that for a tree T" to have zero skew, both of its subtrees A
and B must have zero skew, because the lengths of the edges above T
affect the lengths of the paths to the leaves of both A and B in the
same way.

e Base Case: If T is a leaf, i.e. it does not have any child nodes, the
skew of T is zero. The length of the complete tree T is zero.

e Induction Hypothesis: Assume that zeroSkew reduces the skew to
zero for trees A and B and returns the length of the complete tree A
or B respectively.

e Induction Step: We prove that zeroSkew(T') reduces T"’s skew to zero
and returns 7’s complete lengths, where A and B are children of T
We know that A and B have zero skew and we know their complete
length hy and hp. diff is the difference between the complete length
plus the length of the connection edge of A and B. T has zero skew,
ift diff = 0. By increasing the length of the connecting edge of the
smaller subtree by the absolute value of diff, ha + lr 4 and hp + l1p
become equal. Therefore, T has now zero skew. Also, notice that there
is no better way (that involves adding a smaller number) of reducing
T’s skew to zero, since we are not allowed to reduce the length of an
edge.

e The resulting tree has a minimal complete length, i.e. there is no other
way of changing the lengths such that T' has zero skew, since we are



CSE 202 Homework 2 Matthias Springer, A99500782 8

only allowed to increase the length of a node and because every subtree
must have zero skew. Therefore, the best way to reduce the skew to
zero is to work bottom up and to always increase the length of at most
one of T’s subtrees.

Runtime

We used divide and conquer to divide the problem of reducing T’s skew to
zero into subproblems for each of the subtrees. Therefore, we created two
subproblems and each subproblem can be solved in constant time, since we
only compare two numbers amd add four numbers. In other words, we did a
constant amount of computation for every node. Therefore, the runtime for
the algorithm in O(n), where n is the number of nodes in the tree.

Problem 4

Basic Idea

e For all functions f.(z), generate a list of all pairwise intersection points
x;, resulting in a list of intervals when we sort the intersection points
by x-values.

e For every interval (z;,x;41), calculate the minimum spannning tree
(Kruskal’s algorithm or Prim’s algorithm) for z = %, resulting in
a list of edges £ ;41 for every interval. We denote this by the tupel
(i, Tiv1, Eii1).

e For every tupel (z;xi11, Ei41), calculate the minimum mg,,,, of the
function Sg,,,,(x) = X e, .., f(¥)by calculating its first derivation.

e Output the smallest of all mg, ;. ,.

Pseudocode

The algorithm receives a graph G = (V| E') and a list of quadratic functions
fe(t) for every e € E as an input.

X < new Set

for all a € £ do



CSE 202 Homework 2 Matthias Springer, A99500782 9

for all b € FE do
X.add(intersection(a,b))
end for
end for
sort(X)
X.add(X first — 10)
X.add(X last + 10)
Mpest < OO
for all consequitive pairs (z;, x;11) € X do
H + MST(®+5=1)
M ZfeH f(ZL“)
M+ 21
m < x where M'(z) =0
if M(m) < mypes then
Mpest < M<m)
Thest <~ M
end if
end for
return .

Proof

e Kruskal’s algorithm and Prim’s algorithm do not care about the exact
values of the edges when they generate the minimum spanning tree.
What matters is the relation of the edges to each other, e.g. if the
weight of an edge is bigger than another one.

e When two functions f.(x) intersect, the weight of one edge gets bigger
than the weight of the other edge. Therefore, when we take a look at
values of x, Kruskal’s/Prims’s algorithm only decides to use a different
set of edges when we cross an intersection point of two edge function.

o We generate a MST for every interval, i.e. for every possible combina-
tion of edge function relations. We only do this for retrieving the set of
edges that are used for this interval. We can be sure that the minimum
value of x is in one of the intervals, since they cover all numbers from
—0o0 to oo.



CSE 202 Homework 2 Matthias Springer, A99500782 10

e For every interval, we find the extreme point of the sum of all functions
of the chosen edges. Since all edge functions are quadratic functions,
the sum of a set of edge functions is also a quadratic function. We can
be sure that the optimum is always a minimum, because a > 0. One of
the minimums must yield the smallest MST, because the set of edges
is fixed in every interval.

e Note: the first and the last interval are open intervals, i.e. they have
no boundary towards —oo and co. We added the intersection points
X first — 10 and X .last 4+ 10 to have intervals for these edge cases. Note,
that even these outer intervals have a minimum, i.e. the minimum can
not be at —oo or oo, because a > 0.

Runtime

e Generating all intersection points: O(|E|?), resulting in O(|E|?) inter-
section points and intervals.

e Sorting the intersection points: O(|E|?log|E|?).

e Generating the minimal spanning tree with Kruskal’s algorithm: O(|E|log |E|)*.
Generating the MST for all intervals requires O(|E|*log|E|) time.

e Generating the sum of all selected edges, generating its derivative and
finding its minimum takes O(|E|) time, because |E| is the maximal
number of functions that are summed up. For all intervals, this takes
O(|E|?) time.

e The overall runtime of the algorithm is bounded by O(|E|?), i.e. it is
polynomial in the the number of edges.

Problem 5

Basic Idea

e We define the function splittable(i, p,, p,) that determines whether the
substring of s beginning at index ¢ is splittable, assuming that we al-
ready saw the prefixes p, of x and p, of .

'Source: Wikipedia



CSE 202 Homework 2 Matthias Springer, A99500782 11

o splittable = true < splittable(i + 1, pre(z,p, © s;),py) V splittable(i +
1, po, pre(y, py © 8;)), with pre(a,p,) = € if a = p, else p,* and o is the
concatenation of strings.

e We fill the table for splittable using dynamic programming, beginning
with the maximum value of i (from the back of the sequence). The
base cases are splittable(n + 1,p,,p,) = true, for all prefixes p, of
and all prefixes p, of y and where n = |s|.

e We extract the solution to the problem (whether the string is splittable
or not, an exact splitting is not requested) at splittable(1, ¢, ¢€).

Pseudocode

splittable(n + 1, p,, py) < true Vp, € prefixes(z)Vp, € prefixes(y)
for + < n downto 1 do
for all p, € prefixes(X) do
for all p, € prefixes(Y') do
18Splittable < false
if p, o s; € prefixes(z) A splittable(i + 1, pre(x, p; © s;), py) then
isSplittable < true
end if
if p, o's; € prefixes(y) A splittable(i + 1, p,, pre(y, py o s;)) then
18Splittable < true
end if
end for
end for
end for
return splittable(1, €, €)

Proof
We proove by induction that splittable(i, p,, p,) contains true iff the substring
beginning at ¢ is splittable, given that splittable(i + 1,...,...) contain the

correct value.

e Base Case: For i = n+ 1, the substring is empty. An empty substring
is always splittable regardless of the already seen prefixes, because a

Zpre(a, p,) returns e if the prefix p, is the whole word a.



CSE 202 Homework 2 Matthias Springer, A99500782 12

sequence of x or y does not necessarily have to be completed. Therefore,
for all valid prefixes of x and y, an empty string is considered splittable.

e [nduction Hypothesis: Let us assume that we know whether a substring
beginning at index i + 1 is splittable, for all possbile combinations of
valid prefixes of x and y.

e Induction Step: Let us assume that the current prefix of z, i.e. the
characters of x that we already saw, is p, and that the current prefix
of y is p,. Now we consider two cases.

— pg o s; is a prefix of x or equals x, and splittable(i + 1, pre(x, p, o
S;),py) = true. In that case, we know that the current sequence
of x, that we read so far, can be continued by reading the next
character from the sequence string s;. We also know, that the
rest of the sequence string is splittable, considering the new prefix
pre(x, py 0 s;) and the unchanged prefix p,. Therefore, the string
beginning at index i is splittable with the current prefixes p, and
Dy-

— The same argument can be made for y and p,, meaning that the
sequence of currently read ys can be continued by reading the

character s; and the rest of the sequence string is also splittable
with the new prefixes.

— Note, that the previous cases can both apply at the same time.

— Otherwise, the substring beginning at index i is not splittable with
the current prefixes p, and p,. In case, neither p, o s; nor p, o s;
are prefixes of x or y respectively, the character s; can neither
contribute to the sequence of already read xs (represented by p,)
nor to the sequence of already read ys. In case, p, o s; or p, os;
is a valid prefix but splittable(i + 1, pre(z,p, © s;),py) = false or
splittable(i + 1, p,, pre(y, py © s;)) = false respecively, the current
character could continue the list of already read x/y, but then the
rest of the string is not splittable anymore, i.e. at some point,
we will encounter a character that can neither continue the list
of already read x nor the list of already read y. Therefore, the
substring beginning at index ¢ is not splittable with the current
prefixes p, and p,.



CSE 202 Homework 2 Matthias Springer, A99500782 13

Runtime

e We have |z| - |y| base cases at n + 1, for all possible combinations of
prefixes of x and y. Filling the table with true for all base cases takes
O(|x| - |y|) time.

e The rest of the table consists of n - |z| - |y| cells. We iterate over these
cells in a specific sequence, resulting in O(n - |z| - |y|) steps.

e The checks inside the innermost loops take constant time for evaluting
the table at two different positions. Checking, if the p, o s; or p, o s;
are prefixes of x or y can also be done in constant time, because know
already that p, and p, are prefixes of z and y. Therefore, we only have
to compare the new character s;.

e The overall runtime complexity of the algorithm is O((n+1) - |z| - |y]).

Problem 6

Subproblem a
Basic Idea
e Generate the graph G = (V, En) with En = Neegy.61,..61 G-E-

e Find the shortest path from s to ¢t in G with breadth-first search or
another shortest path algorithm, e.g. Dijkstra.

Pseudocode

In the pesudocode, we denote the set of edges at time ¢ with F;. The function
BFE'S runs the breadth-first search and outputs the shortest path between
two vertices.

Eﬁ <~ mEG{Eo,Elw-,Eb} E
return BFS(V, En, s,t)

Proof

All paths from s to t that exists in all graphs G;, must also exist in the
intersection of all graphs G; (resulting in a new graph), and all paths from



CSE 202 Homework 2 Matthias Springer, A99500782 14

s to t in the intersection of all G; exist in every single graph G;. Therefore,
the shortest path from s to ¢ that exists in all graphs G; is the shortest path
from s to ¢ in the intersection graph of all G;.

Since all edge weights are the same, i.e. the length is defined as the
number of edges, breadth-first search can be used to find the shortest path
from s to t.

Runtime

e Generating the intersection of all G; can be done by checking if every
possible edge between to vertices in V' is present in every graph G;.
Since we have to check O(|V|?) edges with this approach, the runtime
for this step is O(b-|V|?). Note, that the set of vertices stays the same.

e BFS can be done in O(|V| + |E]). In the worst case, considering a full
graph, the runtime is therefore O(|V]?).

e The overall runtime complexity of the algorithm is O((b+ 1)]V[2).

Subproblem b
Basic Idea

e Solve with dynamic programming.

e Let j be the time when the path selected so far changes, cost(i) =
cost(Py, ..., P;), and shortest(a, b) be the shortest path in the intersec-
tion of all G; with a <14 <b. Then, cost(i) = min{ming.;<;(cost(j) +
(i —j) - U(shortest(j +1,i) + K)), (i + 1) - l(shortest(0,7))}.

e In the first case of the min function, we take a look at every possibility
to select a new path among the graphs G up to G;_13. In that case, we
take the same path for all graphs G411 up to G; and solve the problem
for the previous graphs recursively (that’s where dynamic programming
comes in). For Gj4; to G; we select the shortest path that is shared
with all these graphs (subproblem a) and add the cost K.

3For G;, we cannote decide to take a new path from there on, because there are no
more graphs after G;.



CSE 202 Homework 2 Matthias Springer, A99500782 15

e In the second case of the min function, we choose not to change the
current path at all. Therefore, we select the minimum path that is
shared with all graphs G up to G; (subproblem a).

Pseudocode

Note, that there are two different cost arrays in the pesudo code. One is
one-dimensional, the other one is two-dimensional.

for all i +— 0 to b do
for all j <7 to b do
shortest|i, j| < algorithm from subproblem a(G;,. .., G;)
cost[i, j| < l(shortest]i, j])
end for
end for
cost|0] < I(shortest path in Gj)
change[0] <— —1
for i <1 to b do
cost. < ming<<;(cost[j| + K + cost[j + 1,3 - (i — j))
time, < argming_; ;(cost[j] + K + cost[j + 1,i] - (i — j))
costy, < (1 + 1) - cost|0, 1]
if cost,. < cost,, then
cost[i] « cost,
changeli| + time..
else
cost[i] < cost,,
changeli] < —1
end if
end for
P < new List
i<b
while i # —1 do
nextChange < changeli]
for j + nextChange + 1 to i do
P.add(shortest|nextChange + 1,1])
end for
1 < nextChange
end while
return P.reversed()



CSE 202 Homework 2 Matthias Springer, A99500782 16

Proof

We prove by induction that the correct value for cost|i] is generated, given
that all cost[j] with j < i are correct.

e Induction Base: For ¢ = 0, we have only one graph GGy. Therefore,
the sequence of paths that minimize the formula is the minimum path

in GO-

e Induction Hypothesis: Assume, that for an arbitrary but fixed n,
all cost[i] with i < n are correct.

e Induction Step: We show that cost[n + 1] is calculated correctly.
There are two cases that we have to discuss.

— cost, < cost,: In that case, it is better to change the path after G;
between GG; and G,,. We take a look at every possible time value
7 and try to change the path directly after this point. The total
cost for such a change is cost(p)+ K +(n+1—j)-cost(j+1,n+1),
i.e. the cost for the subproblem (that is smaller than n — 1 and
therefore correctly solved according to the induction hypothesis)
plus the cost for the change plus the cost for the new path for all
remaining G4 to Gy,4;. For these remaining graphs, the minimal
path from s to ¢ minimize the costs. We take change the path at
the minimum value of j, if the total costs are smaller than not
changing the path at all. The costs for not changing the path
at all is the length of the shortest path in the intersection of all
graphs, multiplied by the number of graphs.

— cost, < cost.: In that case, it is better not to change the path at
all, since the costs for that option are smaller than the costs for
changing the path at any time j (for an explanation, see previous
case).

— cost, = cost.: In that case, it does not matter, which option we
choose, since they result in the same total cost. In the pseudocode,
we always choose not to change the path at all.

The last part of the algorithm reconstructs the path. Whenever the algo-
rithm decides to change the path or not to change the path at all, changeli]
contains this decision for time/graph ¢. In case, the algorithm decides to



CSE 202 Homework 2 Matthias Springer, A99500782 17

change the path, changeli] is the index of the first graph (counting starts
from n) with a different path. Since this value is based on the decision that
we proved correct in the induction proof, we can assume that the values for
change are correct. We can reconstruct the paths by getting the shortest
paths for every interval from the two-dimensional costs array containing the
shortest paths for all pairs of graphs.

Runtime

e Filling costs with the shortest paths: We have to run the algorithm
from subproblem a for every pair of graphs. This takes O(b® - [V|?)
time?.

e Filling the cost array with the path change points: for each number of
graphs ¢ = 1...b, we have to take a look at the array values cost[k]
of all smaller £ < i. We assume that comparing and evaluating the
cost formula takes constant time. Therefore, the runtime for this step

is O(b?).

e For extracting the solution, we have to take a look at at most b entries of
the change array, in case the path changes with every graph. Therefore,
the runtime complexity for this step is O(b).

e The overall runtime complexity for the algorithm is O(b* - |[V]?).

Problem 7

Basic Idea
e Solve with dynamic programming.

e For a duration of 7 days and an amount of stock r, we calculate the
overall profit profit(i,r) = maxo<a<,(profit(i — 1,7 — a) + a - (p; —
fla) — accumulatedF (i — 1,7 — a))) with the base cases profit(1,i) =
i+ (p1 — f(r)) for every i € 0...r where r is the maximum amount
of stock that we are considering in this problem. Note, that a is the
amount stock that we sell in the last day.

4The value b in the runtime complexity formula for subproblem a is smaller or equal
to the value of b in this problem.



CSE 202 Homework 2 Matthias Springer, A99500782 18

e In addition, we maintain the accumulated sums of f(a) for every value
in profit with accumulatedF (i,r) = accumulatedF (i — 1,7 — a) + f(a),
where a is the minimum argument in the formula of profit.

Pseudocode

In the algorithm, a,..[i, 7] is the amount of stock that we sell at a given date
1, given that we have r. We need this array to reconstruct the solution in
the second part of the algorithm.
Umaz| 1,1 <~ 1 Vi€0...r
profit[1,i] < i-(pr — f(i)) Vi€ O...r
accumulatedF[1,i] = f(i) Vi€ 0...r
for all : <+ 2 to n do
for all ¢ < 0 to r do
Umaz i, q] < argmax,,<,(profitli—1, g—al+a-(p;i— f(a)—accumulated F' [i—
1,q —a]))
profitli, q| <= profit[i—1, ¢—amas[t, ql]+amas[i; ) (pi— f(@mas [i; q]) —
accumulatedF[i — 1,q — Gmaz[i, q]])
accumulatedF[i, q] < accumulatedF[i—1, q—amaz [i, )]+ f (maz[i, q])
end for
end for
remaining <— r
for : < n downto 1 do
Yi < Qmaz|t, Temaining|
TEMAINING $— TEMAINING — U;
end for

Proof

We prove by induction that profit]i,q] contains the maximum achievable
profit for a duration of i days and an amount ¢ of stock, given that profit(i', ¢')
is correct for all 1 <i' <iand all 0 < ¢’ <gq.

e Base Case: For i = 1, we have to sell all stock on the first (and only)
day. Therefore, the profit is ¢ - (p1 — f(q)), for all positive integers g.
Similarly, accumulatedF'[1,q] = f(q).

e Induction Hypothesis: Let us assume that profit[i, q] contains the
maximum achievable profit for an arbitrary but fixed duration of ¢ days



CSE 202 Homework 2 Matthias Springer, A99500782 19

and all positive integers q. Let us furthermore assume that accumulatedF'[i, q]
contains the accumulated sum of all f(ax) after day ¢, where ay is the
amount of stock that is sold on day k, with £ =1...4.

e Induction Step: Let us assume that selling an amount a of stock
on day ¢ yields the maximum profit. In that case, we have to sell
an amount ¢ — a of stock in the previous days. We can be sure that
profiti — 1,q — a'] contains the maximum profit for any amount a’ of
stock (induction hypothesis) and accumulatedF[i — 1,q — a'] contains
the sum of all f(a) for all previous days. The overall profit is the sum
of the profit of the previous days plus the profit for selling an amount a’
of stock on the last day i. Therefore, we can find the maximum profit
by evaluating all possibilities of selling stock on the last day, result in
a maximum profit of maxo<,<,(profit(i —1,q —a') +d' - (p; — f(a’) —
accumulatedF (i —1,q—a’))). Therefore, we get the maximum profit at
a = a'. Since accumualtedF is based on the same decision and simply
sums up all values of f(a) for every day and amount of stock, we can
be sure that it is correct.

Runtime

e Filling the arrays for all base cases: O(r), assuming that function eval-
uations and aritmetic operations can be done in constant time.

e Filling the rest of the DP table: the outer loop iterates over all n days
and the inner loop iterates over possible numbers of stock r°. For every
run of the inner loop, we have to check all stock amounts for ¢ — 1 in
order to find the maximum. The total runtime complexity for filling
the DP table is therefore O(n - r?).

e Extracting the solution: we have to check n array values. This takes
O(n) time.

e The overall runtime complexity for the algorithm is O(n - r?).

5Note, that the amount of stock to be sold can never get greater in a later step, therefore
it is sufficient to iterate up to r for every day 1.



CSE 202 Homework 2 Matthias Springer, A99500782 20

Problem 2

Basic Idea

e We use a modified version of Dijkstra’s algorithm to determine the
shortest path.

e Instead of distance values, we use arrival time value and evaluate the
function f.(t) for e = (vy,v9), if we consider travelling from v; to vy,
starting at time t.

e The rest of the algorithm works like the normal Dijkstra algorithm.

Pseudocode

The idea for the Dijkstra algorithm and its steps were taken from Wikipedia.
Ine the algorithm, we assume, that there is always a path from the source
to the target (otherwise it would be a strange journey). If there is no such
path, the algorithm outputs an empty list (since no predecessor exists for the
target vertex).

dist[v] <~ oo Yo € V
prefv] <+ O Vv e V
dist[s] <= 0
Q+—V
while Q # () do
next < vertex in () with minimal dist
Q) .remove(next)
for all e = (next,vy) € E do
newDist < dist[next] + f(dist|next])
if newDist < dist|vy| then
dist[ve] <— newDist
pre[vg] < next
end if
end for
end while
P < new List
vt
while pre(v) # () do
S.add(v)



CSE 202 Homework 2 Matthias Springer, A99500782 21

v 4 pre(v]
end while
return S.reversed()

Proof

e The algorithm is very similar to Dijkstra’s algorithm. However, the
edge values are no longer real number but functions of time.

e Dijkstra’s algorithm cannot handle negative edge weights. Therefore,
it is important, that the function f.(t) is monotone increasing. If we
were able to go back in time, this would correspond to a negative edge
weight in the graph (arrival time < starting time = time spent < 0).

e The rest of the proof is similar to the original Dijkstra proof, since
the algorithm involves the same steps as Dijkstra. We can prove by
induction that the algorithm finds the correct shortest path by proving
that the distance values are computed correctly.

Runtime

The outer while loop visits every vertex in V' exactly once. For every vertex,
we take a look at all of its edges, which can be no more than |E|. For
every such edge, we query the website once. Therefore, the runtime of the
algorithm is bounded by O(|V| - |E|) queries.



