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1 Minimum Feedback Vertex Set Problem

The minimum feedback vertex set problem is an NP-complete graph problem that is defined as follows.
Given a graph G = (V,E) and a weight w(vi) for every vertex vi, find a subset S ⊆ V , such that the induced
subgraph G[V − S] is acyclic and

∑
vi∈S w(vi) is minimized. The proof and the arguments described in this

work follow closely Chapter 6 in Vazirani’s book Approximation Algorithms.

2 Cyclomatic Number of a graph

Let G = (V,E) be a connected graph.

2.1 Notation and Definitions

Simple cycle. A cycle where no vertex repeats.

Characteristic vector of a cycle c. An element of GF [2]|E| where the ith element is set to 1 iff ei ∈ c.
The characteristic vectors of two distinct simple cycles are linearly independent, because the cycles must
differ in at least one edege.

Cycle space S (G) of a graph G. Let C(G) be the set of all characteristic vectors for all simple cycles in
G. We define S (G) = span(C(G)). Note that, S (G) ≤ GF [2]|E|.

Cyclomatic number. cyc(G) = dimS(G).

Connected components. κ(G) is the number of connected components in G.

Decrease in cyclomatic number. δG(v) = cyc(G) − cyc(G[V − {v}]) is the decrease of the cyclomatic
number of G when removing v from G.

Cyclomatic weight function. w(v) is a cyclomatic weight function if w(v) = c · δG(v) for some c > 0.

2.2 Computation of the cyclomatic number

We claim that the following formulas holds true for every graph G.

Lemma 1 cyc(G) = |E| − |V |+ κ(G).

Proof For the moment, let G be a graph consisting of a single connecting component. We show that
cyc(G) = |E| − |V |+ 1.

The dimension of a vector space is the number of base vectors, i.e. the number of linearly independent
vectors. Therefore, cyc(G) is the number of simple cycles in G. Let T be a spanning tree of G. For every
e ∈ E with e 6∈ T , T ∪ {e} has exactly one simple cycle, and all these simple cycles are distinct, since
they all have a different edge e. Therefore, the characteristic vectors for all these simple cycles are linearly
independent. T has |V | − 1 edges, therefore, there are |E| − |V | + 1 edges e that we could add to T , and
cyc(G) ≥ |E| − |V |+ 1.

For every spanning tree T , we can generate a cut of the graph, i.e. a partitioning of V into V1 and V2, by
removing an edge e ∈ T . There are |V | − 1 such cuts, because the spanning tree has |V | − 1 edges. Similarly
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to the characteristic vector of a cycle, we can define the characteristic vector of cut as follows: it is an element
of GF [2]|E|, where an element is 1, if the corresponding edge is part of the cut. Note, that every cycle in G
must cross the cut an even number of times. Otherwise, the cycle would get stuck on one side of the cut and
not return to the beginning of the cycle. Therefore, the space of characteristic vectors of cuts is orthogonal
to the cycle space and the following argument holds true.

• There are |V | − 1 cuts, resulting in |V | − 1 characteristic vectors for T .

• All characteristic vectors for T are linearly independent, since every distinct cut lacks a different edge.

• cyc(G) ≤ |E| − |V |+ 1, since both vector spaces are orthogonal.

• cyc(G) = |E| − |V |+ 1, since also cyc(G) ≥ |E| − |V |+ 1.

The cycle space of a graph consisting of multiple connected components is the sum of the cycle spaces of
every connected component. For every connecting component, we can apply the proof shown above, resulting
in a total cycle space of

∑
c∈components(G) |E[c]| − |V [c]|+ 1 = |E| − |V |+ |components(G)| = |E| − |V |+ κ(G).

Lemma 2 cyc(G) =
∑|F |

i=1 δGi−1
(vi), where Gi = G[V − {v1, v2, . . . , vi}], i.e. the vertex-induced subgraph

when removing the first i vertices of the feedback set F .

Proof The proof follows from the definition of F . G[V − F ] is acyclic, i.e. when we remove all vertices F ,
we must have destroyed all simple cycles in G, and there are exactly cyc(G) simple cycles in G.

Lemma 3 If H ≤ G, i.e. H is a subgraph of G, then ∀v ∈ V : δH(v) ≤ δG(v).

Proof Let us, without loss of generality, assume that G and H are connected. We know that δG(v) =
degG(v) − κ(G[V − {v}]), therefore we can proove the lemma by showing that degH(v) − κ(H[V − {v}]) ≤
degG(v)− κ(G[V − {v}]). Now, consider an edge e ∈ E[G−H].

• First case: e is connected to v. Removing v might generate an additional component, i.e. increase κ by
one. However, it also increases degG(v) by one.

• Second case: e is not connected to v. In that case, e does not affect the degree of v, but it might reduce
the number of components in case it connects two otherwise disconnected components.

Lemma 4 cyc(G) ≤
∑

v∈F δG(v)

Proof We know that cyc(G) =
∑|F |

i=1 δGi−1
(vi). Note, that Gi is a subgraph of Gi−1. Due to the previous

lemma, we know that δGi
(v) ≤ δGi−1

(v). Therefore,
∑|F |

i=1 δGi−1
(vi) = cyc(G) ≤

∑|F |
i=1 δG0(vi) =

∑
v∈F δG(v).
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Lemma 5 If w(v) is a cyclomatic weight function and F is an optimal feedback vertex set, then c·cyc(G) ≤
OPT .

Proof We know that cyc(G) ≤
∑

v∈F δG(v), therefore c ·cyc(G) ≤ c ·
∑

v∈F δG(v) =
∑

v∈F c ·δG(v) = w(F ) =
OPT , where c is the constant of the cyclomatic weight function.

Lemma 6
∑

v∈F δG(v) ≤ 2 · cyc(G) if F is a minimal feedback vertex set. Also, w(F ) ≤ 2 ·OPT

Proof The proof for this lemma can be found in the next lecture notes or in the book Approximation
Algorithms by Vazirani.

3 Layering Algorithm

We now consider graphs with an arbitrary weight function. For a graph G, we define c as follows.

c = min
v∈V

w(v)

δG(v)

We now split w(v) into two parts. w(v) = w′(v)+ t(v), where t(v) = c ·δG(v). Note, that w′(v) = 0 for at least
one vertex v. In the following, we present an iterative algorithm that generates a sequence of graphs, until,
a some point, the graph is acyclic. We generate a subsequent graph by removing vertices from the previous
one, therefore Gi ≤ Gi+1 and G = G0.

The algorithm for generating a minimal feedback vertex set is based on the following idea. If G = (V,E),
H = (V ′, E ′), H ≤ G, and F is a minimal feedback vertex for H, then we can generate a minimal feedback
vertex for G by taking all vertices from F and adding some additional vertices from V − V ′.

Lemma 7 Let G = (V,E), H = (V ′, E ′), H ≤ G, and F be a minimal feedback vertex set for H. Then,
F ∪ F ′ is a minimal vertex set for G, where F ′ ⊆ V − V ′, such that F ∪ F ′ is a feedback vertex set for G
and F ′ is a minimal set.

Proof Let v ∈ F an arbitrary vertex. There must be a cycle C in H that uses v but no other vertex from
F . Otherwise, we could remove one of these two vertices and F would be minimal. Since F ′ ⊆ V − V ′, we
know that F ′ ∩ V ′ = ∅. Therefore, C uses only the vertex v from F ∪ F ′. Therefore, if we would remove v
from F ∪ F ′, this set would no longer be a feedback vertex set. Therefore, this set is minimal.
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Algorithm We iteratively build a sequence of graphs as follows.

• G0 ← G, V0 ← V , w′0 ← w, i← 0

• While Gi is not acyclic

– c← minv∈Vi
w′i(v)

δGi
(v)

– ∀v ∈ Vi : ti(v)← c · δGi
(v)

– ∀v ∈ Vi : w′i+1(v)← w′i(v)− ti(v)

– Vi+1 = {v ∈ Vi |w′i+1 > 0}
– Gi+1 ← Gi[Vi+1]

– i← i+ 1

• k ← i, H ← Gk

Based on the graph Gi, we can build a feedback vertex set as follows. Start with Fk = ∅. For every subsequent
graph Gk−1, . . . , G0 = G, add a minimal set of vertices from Vi−1 − Vi (i.e., the vertices that we add when
considering the next graph) to the feedback vertex set, such that the new set is a feedback vertex set for the
next graph.

Lemma 8 The algorithm described above approximates the optimal solution by a factor of 2.

Let us assume that F ∗ is an optimal solution for the graph G. Consider any vertex-induced subgraph
Gi. F ∗ ∩ Vi is a feedback vertex set for Gi. Note, that for every vertex v,

∑k
i=0 ti(v) = w(v), because

ti(v) = w′i(v)−w′i+1(v) in the algorithm. Therefore, the following term holds true, where OPT i is the weight
of an optimal vertex feedback set for Gi.

OPT = w(F ∗) =
k∑
i=0

ti(F
∗ ∩ Vi) ≥

k∑
i=0

OPT i

We can use the same technique for F0. F0 ∩ Vi is an optimal vertex feedback set for Gi.

w(F0) =
k∑
i=0

ti(F0 ∩ Vi) =
k∑
i=0

ti(Fi)

With Lemma 5 and Lemma 6 we can conclude that w(F0) ≤ 2
∑k

i=0 OPT i ≤ 2OPT .


