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Introduction / Motivation

● Goal: Make GPU programming easier to use.

● Focus: Object-oriented programming (OOP) on 
GPUs/CUDA.

– Many OOP applications in high-performance computing 
(HPC).

– Dynamic memory allocation is highly useful in OOP.

● This work: DynaSOAr, a lock-free dynamic 
memory allocator for struct-ured data, based on 
hierarchical bitmaps.
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Background / Design Requirements



DynaSOAr - ECOOP 2019 4

Memory Access Performance

● SOA: Structure of Arrays data layout.

● A best practice for SIMD/GPU programmers.

● The main optimization of DynaSOAr.

memory coalescingmemory coalescing
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Fragmentation

Size of vector load:
L1/L2 cache line

Size of vector load:
L1/L2 cache line
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Requirements

● Allocations in SOA data layout.

● Low fragmentation (high frag. makes SOA less 
efficient).

– Other allocators [1, 2] use hashing. This leads to high 
fragmentation / less dense allocations.

– Without hashing, raw allocation in DynaSOAr will surely be 
slower than in other allocators. But we can make up for it 
with better memory access performance.

● Efficient heap usage: Low allocator overhead.

● No locking: Can easily deadlock on GPUs.

[1] M. Steinberger, et. al. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. In: InPar 2012.
[2] A. Adinetz, D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator for GPGPU Architectures. In: GTC 2014.
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Overview of DynaSOAr
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DynaSOAr Components

● DynaSOAr achieves superior memory access 
performance by controlling both memory layout and 
memory access patterns.

● Traditional memory allocators control only memory layout.

Memory Allocator
SOA Data Layout

DSL [3]
Parallel Do-all

Operation

● Memory allocator for
structured data.

● Allocates data in SOA
data layout.

● Lock-free design.

● Language-level 
component.

● Hides custom data 
layout from 
programmers.

● Could be also be 
implemented at the 
compiler level.

● SOA by itself is not 
sufficient.

● SOA improves 
performance only with 
certain (coalesceable) 
memory access 
patterns.

● One such pattern: 
SMMO

[3] M. Springer, H. Masuhara. Ikra-Cpp: 
A C++/CUDA DSL for Object-Oriented 
Programming with Structure-of-Arrays 
Layout. In: WPMVP 2018.
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DynaSOAr Components

● DynaSOAr achieves superior memory access 
performance by controlling both memory layout and 
memory access patterns.

● Traditional memory allocators control only memory layout.

Memory Allocator
SOA Data Layout

DSL [3]
Parallel Do-all

Operation

● Memory allocator for
structured data.

● Allocates data in SOA
data layout.

● Lock-free design.

● Language-level 
component.

● Hides custom data 
layout from 
programmers.

● Could be also be 
implemented at the 
compiler level.

● SOA by itself is not 
sufficient.

● SOA improves 
performance only with 
certain (coalesceable) 
memory access 
patterns.

● One such pattern: 
SMMO

Single-Method Multiple-Objects:
Run same method for all objects

of a type. Let DynaSOAr take care
of object-to-thread assignment.

Single-Method Multiple-Objects:
Run same method for all objects

of a type. Let DynaSOAr take care
of object-to-thread assignment.

[3] M. Springer, H. Masuhara. Ikra-Cpp: 
A C++/CUDA DSL for Object-Oriented 
Programming with Structure-of-Arrays 
Layout. In: WPMVP 2018.
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DynaSOAr Heap Layout
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DynaSOAr Heap Layout

No fragmentation.

GOOD!

No fragmentation.

GOOD!Contributes to
fragmentation.

BAD!

Contributes to
fragmentation.

BAD!

No fragmentation.

GOOD!

No fragmentation.

GOOD!
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Block Multi-States
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Allocation Algorithm

● To keep fragmentation low: Always allocate 
objects in active[T] blocks.

● Only if no active[T] block exists, initialize a new 
active[T] block from a free block.

● Reserve object slots within a block with atomic 
operations (atomically set bit to 1).
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How to Find active[T]/free Blocks?

● We index block multi-states with bitmaps.

– Can find blocks by scanning a bitmap.

– Bitmaps are hierarchical: Find set bits with a 
logarithmic order of accesses.

– #bitmaps depends on #classes.
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Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.consistency
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Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.

e.g.: 2 threads trying to allocate in this object slot
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Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.

Thread deallocated 
last object in block.

Can I delete this 
block now? 
(I.e., reset type ID 
and put back in free 
bitmap)
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Optimizations

● Hierarchical Bitmaps.
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Optimizations

● Hierarchical Bitmaps.

● Allocation Request Coalescing [4]: A leader 
thread reserves object slots on behalf of all 
allocating threads in a warp.

[4] X. Huang, et. al. XMalloc: A Scalable 
Lock-free Dynamic Memory Allocator 
for Many-core Machines. In: CIT 2010.
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Optimizations

● Hierarchical Bitmaps.

● Allocation Request Coalescing: A leader thread 
reserves object slots on behalf of all allocating 
threads in a warp.

● Efficient Bit Operations: Utilize bit-level integer 
intrinsics (e.g., ffs).

● Bitmap Rotation: To reduce the probability of 
threads choosing the same bit, rotate-shift 
bitmaps before selecting a bit (e.g., ffs).
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Optimizations

● Hierarchical Bitmaps.

● Allocation Request Colaescing: A leader thread 
reserves object slots on behalf of all allocating 
threads in a warp.

● Efficient Bit Operations: Utilize bit-level integer 
intrinsics (e.g., ffs).

● Bitmap Rotation: To reduce the probability of 
threads choosing the same bit, rotate-shift 
bitmaps before selecting a bit (e.g., ffs).

Plain ffs always select first bit, but with bitmap rotation, 
some threads will select the second bit.
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Benchmarks
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Benchmark Results

(These are all SMMO applications [ECOOP Artifact])
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Benchmark Results

● wa-tor: Fish-and-Shark simulation
(predatory/prey ecosystem)

● Objects: Fish, Shark, Cell
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Linux Scalability Benchmark

● Only (de)allocation, does not access memory.

● DynaSOAr can utilize almost entire heap.
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Conclusion
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Conclusion

● Optimize not only for raw (de)allocation but also for 
efficient access of allocated memory.

● GPUs/SIMD arch. require special optimizations for 
better vectorized access.

– For structured data: SOA data layout.

– Low fragmentation is even more important!

● Atomic memory operations became much faster with 
recent GPU architectures [6].
→Allows us to reduce fragmentation more aggressively.

[6] A. Gaihre, et. al. XBFS: eXploring Runtime Optimizations for Breadth-First Search on GPUs. In: HPDC 2019.
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Backup Slides
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Pinpointing Source of Speedup

● Bitmap rotation is the most important 
optimization (besides SOA data layout).

● Other allocators reduce allocation contention 
with hashing, DynaSOAr uses bitmap rotation.
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