
DynaSOAr - ECOOP 2019 1

DynaSOAr: A Parallel Memory Allocator for 
Object-oriented Programming on GPUs with 

Efficient Memory Access

Matthias Springer, Hidehiko Masuhara
Tokyo Institute of Technology

ECOOP 2019



DynaSOAr - ECOOP 2019 2

Introduction / Motivation

● Goal: Make GPU programming easier to use.

● Focus: Object-oriented programming (OOP) on 
GPUs/CUDA.

– Many OOP applications in high-performance computing 
(HPC).

– Dynamic memory allocation is highly useful in OOP.

● This work: DynaSOAr, a lock-free dynamic 
memory allocator for struct-ured data, based on 
hierarchical bitmaps.



DynaSOAr - ECOOP 2019 3

Background / Design Requirements



DynaSOAr - ECOOP 2019 4

Memory Access Performance

● SOA: Structure of Arrays data layout.

● A best practice for SIMD/GPU programmers.

● The main optimization of DynaSOAr.

memory coalescingmemory coalescing



DynaSOAr - ECOOP 2019 5

Fragmentation

Size of vector load:
L1/L2 cache line

Size of vector load:
L1/L2 cache line



DynaSOAr - ECOOP 2019 6

Requirements

● Allocations in SOA data layout.

● Low fragmentation (high frag. makes SOA less 
efficient).

– Other allocators [1, 2] use hashing. This leads to high 
fragmentation / less dense allocations.

– Without hashing, raw allocation in DynaSOAr will surely be 
slower than in other allocators. But we can make up for it 
with better memory access performance.

● Efficient heap usage: Low allocator overhead.

● No locking: Can easily deadlock on GPUs.

[1] M. Steinberger, et. al. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. In: InPar 2012.
[2] A. Adinetz, D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator for GPGPU Architectures. In: GTC 2014.



DynaSOAr - ECOOP 2019 7

Overview of DynaSOAr



DynaSOAr - ECOOP 2019 8

DynaSOAr Components

● DynaSOAr achieves superior memory access 
performance by controlling both memory layout and 
memory access patterns.

● Traditional memory allocators control only memory layout.

Memory Allocator
SOA Data Layout

DSL [3]
Parallel Do-all

Operation

● Memory allocator for
structured data.

● Allocates data in SOA
data layout.

● Lock-free design.

● Language-level 
component.

● Hides custom data 
layout from 
programmers.

● Could be also be 
implemented at the 
compiler level.

● SOA by itself is not 
sufficient.

● SOA improves 
performance only with 
certain (coalesceable) 
memory access 
patterns.

● One such pattern: 
SMMO

[3] M. Springer, H. Masuhara. Ikra-Cpp: 
A C++/CUDA DSL for Object-Oriented 
Programming with Structure-of-Arrays 
Layout. In: WPMVP 2018.



DynaSOAr - ECOOP 2019 9

DynaSOAr Components

● DynaSOAr achieves superior memory access 
performance by controlling both memory layout and 
memory access patterns.

● Traditional memory allocators control only memory layout.

Memory Allocator
SOA Data Layout

DSL [3]
Parallel Do-all

Operation

● Memory allocator for
structured data.

● Allocates data in SOA
data layout.

● Lock-free design.

● Language-level 
component.

● Hides custom data 
layout from 
programmers.

● Could be also be 
implemented at the 
compiler level.

● SOA by itself is not 
sufficient.

● SOA improves 
performance only with 
certain (coalesceable) 
memory access 
patterns.

● One such pattern: 
SMMO

Single-Method Multiple-Objects:
Run same method for all objects

of a type. Let DynaSOAr take care
of object-to-thread assignment.

Single-Method Multiple-Objects:
Run same method for all objects

of a type. Let DynaSOAr take care
of object-to-thread assignment.

[3] M. Springer, H. Masuhara. Ikra-Cpp: 
A C++/CUDA DSL for Object-Oriented 
Programming with Structure-of-Arrays 
Layout. In: WPMVP 2018.



DynaSOAr - ECOOP 2019 10

DynaSOAr Heap Layout



DynaSOAr - ECOOP 2019 11

DynaSOAr Heap Layout

No fragmentation.

GOOD!

No fragmentation.

GOOD!Contributes to
fragmentation.

BAD!

Contributes to
fragmentation.

BAD!

No fragmentation.

GOOD!

No fragmentation.

GOOD!



DynaSOAr - ECOOP 2019 12

Block Multi-States



DynaSOAr - ECOOP 2019 13

Allocation Algorithm

● To keep fragmentation low: Always allocate 
objects in active[T] blocks.

● Only if no active[T] block exists, initialize a new 
active[T] block from a free block.

● Reserve object slots within a block with atomic 
operations (atomically set bit to 1).



DynaSOAr - ECOOP 2019 14

How to Find active[T]/free Blocks?

● We index block multi-states with bitmaps.

– Can find blocks by scanning a bitmap.

– Bitmaps are hierarchical: Find set bits with a 
logarithmic order of accesses.

– #bitmaps depends on #classes.



DynaSOAr - ECOOP 2019 15

Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.consistency



DynaSOAr - ECOOP 2019 16

Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.

e.g.: 2 threads trying to allocate in this object slot



DynaSOAr - ECOOP 2019 17

Challenges

● Eventual consistency of data structures.

– Block multi-states ↔ Block multi-state bitmaps (indices)

– Different levels of block multi-state bitmap hierarchy

– Algorithms must be able to handle temporary inconsistencies: 
Optimistic, rollback if inconsistency detected.

● Reduce allocation contention: Multiple threads trying to allocate 
the same memory location. (Only one can succeed.)

● Safe memory reclamation: When is it safe to delete a block?

– All blocks have same structure: All blocks have the same byte size. Object 
allocation bitmaps are always located at the same offset.

– Block invalidation: Atomically set all bits to 1. Block seems full to other 
threads and no allocation can succeed. Then it is safe to delete.

Thread deallocated 
last object in block.

Can I delete this 
block now? 
(I.e., reset type ID 
and put back in free 
bitmap)



DynaSOAr - ECOOP 2019 18

Optimizations

● Hierarchical Bitmaps.



DynaSOAr - ECOOP 2019 19

Optimizations

● Hierarchical Bitmaps.

● Allocation Request Coalescing [4]: A leader 
thread reserves object slots on behalf of all 
allocating threads in a warp.

[4] X. Huang, et. al. XMalloc: A Scalable 
Lock-free Dynamic Memory Allocator 
for Many-core Machines. In: CIT 2010.



DynaSOAr - ECOOP 2019 20

Optimizations

● Hierarchical Bitmaps.

● Allocation Request Coalescing: A leader thread 
reserves object slots on behalf of all allocating 
threads in a warp.

● Efficient Bit Operations: Utilize bit-level integer 
intrinsics (e.g., ffs).

● Bitmap Rotation: To reduce the probability of 
threads choosing the same bit, rotate-shift 
bitmaps before selecting a bit (e.g., ffs).



DynaSOAr - ECOOP 2019 21

Optimizations

● Hierarchical Bitmaps.

● Allocation Request Colaescing: A leader thread 
reserves object slots on behalf of all allocating 
threads in a warp.

● Efficient Bit Operations: Utilize bit-level integer 
intrinsics (e.g., ffs).

● Bitmap Rotation: To reduce the probability of 
threads choosing the same bit, rotate-shift 
bitmaps before selecting a bit (e.g., ffs).

Plain ffs always select first bit, but with bitmap rotation, 
some threads will select the second bit.



DynaSOAr - ECOOP 2019 22

Benchmarks



DynaSOAr - ECOOP 2019 23

Benchmark Results

(These are all SMMO applications [ECOOP Artifact])



DynaSOAr - ECOOP 2019 24

Benchmark Results

● wa-tor: Fish-and-Shark simulation
(predatory/prey ecosystem)

● Objects: Fish, Shark, Cell



DynaSOAr - ECOOP 2019 25

Linux Scalability Benchmark

● Only (de)allocation, does not access memory.

● DynaSOAr can utilize almost entire heap.



DynaSOAr - ECOOP 2019 26

Conclusion



DynaSOAr - ECOOP 2019 27

Conclusion

● Optimize not only for raw (de)allocation but also for 
efficient access of allocated memory.

● GPUs/SIMD arch. require special optimizations for 
better vectorized access.

– For structured data: SOA data layout.

– Low fragmentation is even more important!

● Atomic memory operations became much faster with 
recent GPU architectures [6].
→Allows us to reduce fragmentation more aggressively.

[6] A. Gaihre, et. al. XBFS: eXploring Runtime Optimizations for Breadth-First Search on GPUs. In: HPDC 2019.



DynaSOAr - ECOOP 2019 28

Backup Slides



DynaSOAr - ECOOP 2019 29

Pinpointing Source of Speedup

● Bitmap rotation is the most important 
optimization (besides SOA data layout).

● Other allocators reduce allocation contention 
with hashing, DynaSOAr uses bitmap rotation.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

