
06/23/2019 CompactGpu - ISMM 2019 1

Massively Parallel GPU Memory Compaction

Matthias Springer, Hidehiko Masuhara
Tokyo Institute of Technology

ISMM 2019

06/23/2019 CompactGpu - ISMM 2019 2

Introduction / Motivation

● Goal: Make GPU programming easier to use.

● Focus: Object-oriented programming on GPUs/CUDA.

– Many OOP applications in high-performance computing.

– DynaSOAr [1]: Dynamic memory allocator for GPUs.

– CompactGpu: Memory defragmentation for GPUs, to make
allocations more space/runtime efficient.

[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access. ECOOP 2019.

06/23/2019 CompactGpu - ISMM 2019 3

Outline

1. Background: GPU Architecture

2. Memory Defragmentation: Concept and Main Ideas

3. Defragmentation: Step by Step

4. Benchmarks

5. Conclusion

06/23/2019 CompactGpu - ISMM 2019 4

Background: GPU Architecture

06/23/2019 CompactGpu - ISMM 2019 5

Memory Coalescing

If the threads of a physical
core access memory within
the same aligned 128-byte
window (L1/L2 cache line),
the those accesses are
combined into 1 memory
transaction by the memory
controller.

Source: CUDA C Programming Guide
Because the hardware

really operates on
128-byte vector registers.

Because the hardware
really operates on

128-byte vector registers.

06/23/2019 CompactGpu - ISMM 2019 6

Worst Case: No Memory Coalescing

Threads of a physical core
(warp) access memory of
totally different L1/L2 cache
lines.

Before attempting any other
optimization, try to improve
memory coalescing!

= 4096B

06/23/2019 CompactGpu - ISMM 2019 7

Why GPU Memory Defragmentation?

● Space Efficiency: Reduce overall memory consumption.

– Avoid premature out-of-memory errors.

● Runtime Efficiency: Vectorized access is more efficient.

– Accessing compact data requires fewer vector transactions
(→more memory coalescing) than accessing fragmented data.

06/23/2019 CompactGpu - ISMM 2019 8

Memory Defragmentation:
Concept and Main Ideas

06/23/2019 CompactGpu - ISMM 2019 9

Dynamic Memory Allocation on GPUs

● Until recently, not supported well and not widely utilized yet

● Existing dynamic GPU memory allocators

– CUDA allocators (new/delete): Extremely slow and unoptimized

– Halloc [1], ScatterAlloc/mallocMC [2]: Very fast (de)allocation time

– DynaSOAr [3]: Fast (de)allocation time, efficient access of allocations

● Memory allocation characteristics on GPUs

– Massive number of concurrent (de)allocations

– Most allocations are small and have the same size
(due to mostly regular control flow)

[1] A. V. Adinetz and D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator for GPGPU Architectures. GPU Technology Conference 2014.
[2] M. Steinberger, M. Kenzel, B. Kainz, D. Schmalstieg. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. InPar 2012.
[3] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access. ECOOP 2019.

Allows us the implement
memory defrag. more efficiently

than on other platforms.

Allows us the implement
memory defrag. more efficiently

than on other platforms.

06/23/2019 CompactGpu - ISMM 2019 10

Overview

● CompactGpu: A memory defragmentation system for the
DynaSOAr memory allocator.

– Basic Idea: Defragmentation by block merging.

– Optimization: Fast pointer rewriting based on bitmaps.

– Main CompactGpu techniques could be implemented in other
allocators.

06/23/2019 CompactGpu - ISMM 2019 11

Main Design Choices and Requirements

● In-place defragmentation: To save space...

– Defrag. by block merging: Combine blocks that are partly full.

● Fully parallel implementation

– CompactGpu is a set of CUDA kernels.

● Stop-the-world approach: Run defragmentation when no other
GPU code is running.

● Manual: Programmers initiate defragmentation manually or use
a heuristic (e.g., defrag. after a large number of deallocations).

06/23/2019 CompactGpu - ISMM 2019 12

Overview: DynaSOAr Mem. Allocator [1]

● Always allocate in active (non-full) blocks.

● Objects of same type stored in blocks in SOA data layout.
[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-oriented Programming on GPUs with Efficient Memory Access. ECOOP 2019.

Structure of Arrays (SOA):
SIMD/GPU best practice
for better vector access/

memory coalescing.

Structure of Arrays (SOA):
SIMD/GPU best practice
for better vector access/

memory coalescing.

06/23/2019 CompactGpu - ISMM 2019 13

Block States

● free: Block is empty

● allocated [T]: Block contains at
least 1 object of type T.

● active [T]: Block is allocated [T]
and has at least 1 free slot.

● defrag [T]: Block is active [T] and
is a defragmentation candidate
(block with low fill level).

06/23/2019 CompactGpu - ISMM 2019 14

Block States

● free: Block is empty

● allocated [T]: Block contains at
least 1 object of type T.

● active [T]: Block is allocated [T]
and has at least 1 free slot.

● defrag [T]: Block is active [T] and
is a defragmentation candidate
(block with low fill level).

new with CompactGpu

06/23/2019 CompactGpu - ISMM 2019 15

Defragmentation Factor

● n is the problem-specific defragmentation factor that must be chosen at
compile time.

– Consider only blocks of fill level ≤ n/(n+1) for defragmentation (defrag. candidates).

– Move objects from 1 source block into n target blocks.

– One defragmentation pass eliminates 1/(n+1) of all defragmentation candidates. Run
multiple passes to eliminate all candidates.

– Example: n = 1: Merge 2 blocks of fill level ≤ 50%.

– Example: n = 2: Merge 3 blocks of fill level ≤ 66.6%.

– In each case, the source block is eliminated by defragmentation.

● Higher n → More defragmentation

● Lower n → Less defragmentation, but faster (less work)

06/23/2019 CompactGpu - ISMM 2019 16

Block States

06/23/2019 CompactGpu - ISMM 2019 17

Block States

06/23/2019 CompactGpu - ISMM 2019 18

Block State Bitmaps

● DynaSOAr/CompactGpu indexes states in block state bitmaps.

● Newly introduced with CompactGpu: defrag[T]

06/23/2019 CompactGpu - ISMM 2019 19

Definition of Fragmentation

(considering only allocated[?] blocks)

06/23/2019 CompactGpu - ISMM 2019 20

Definition of Fragmentation

(considering only allocated[?] blocks)

Guaranteed frag. level
after defrag.: ≤ 1/(n+1)

(Because all blocks with
fill level ≤ n/(n+1) are gone.)

Guaranteed frag. level
after defrag.: ≤ 1/(n+1)

(Because all blocks with
fill level ≤ n/(n+1) are gone.)

06/23/2019 CompactGpu - ISMM 2019 21

Defragmentation: Step by Step

06/23/2019 CompactGpu - ISMM 2019 22

Choose Source/Target Blocks

● Compact defrag[T] bitmap.
(exclusive prefix sum)

● Choose n target blocks for
each source blocks.

06/23/2019 CompactGpu - ISMM 2019 23

Defragmentation by Block Merging

● Copy objects from a source block to n target blocks (in parallel).

● Source block is empty (new state: free), reducing fragmentation.

● In-place defragmentation mechanism.

06/23/2019 CompactGpu - ISMM 2019 24

Rewriting Pointers to Old Locations

● Store forwarding pointers in source blocks.

● Afterwards: Scan heap and find pointers to relocated objects.
Rewrite those pointers.

06/23/2019 CompactGpu - ISMM 2019 25

Rewriting Pointers to Old Locations

● Scan heap and look for anything that looks like a pointer.

● Rewrite if bid < R[r/n] and block is a defrag. candidate.

Condition 1: bid < 7 (i.e., source range)

Condition 2: defrag[Fish][bid] (i.e., defrag. cand.)

06/23/2019 CompactGpu - ISMM 2019 26

Rewriting Pointers to Old Locations

● Scan heap and look for anything that looks like a pointer.

● Rewrite if bid < R[r/n] and block is a defrag. candidate.

Condition 1: bid < 7 (i.e., source range)

Condition 2: defrag[Fish][bid] (i.e., defrag. cand.)

● Defrag bitmap largely cached.
● 2 mem. reads + 1 write if pointer rewritten
● 1 mem. read otherwise

● Defrag bitmap largely cached.
● 2 mem. reads + 1 write if pointer rewritten
● 1 mem. read otherwise

06/23/2019 CompactGpu - ISMM 2019 27

Benchmarks

06/23/2019 CompactGpu - ISMM 2019 28

Benchmark: N-Body with Collisions

● Memory consumption drops faster.

● Performance improvement: 12%

06/23/2019 CompactGpu - ISMM 2019 29

Benchmark: Generational Cellular Automaton

● Memory consumption drops faster.

– Too much defragmentation leads to overcompaction.

● Performance improvement: 6%

06/23/2019 CompactGpu - ISMM 2019 30

Conclusion

06/23/2019 CompactGpu - ISMM 2019 31

Conclusion

● Efficient memory defragmentation is feasible on GPUs.

● Besides saving memory, defragmentation makes usage of
allocated memory more efficient (better mem. coalescing).

● GPU memory allocation patterns allow us to implement
defragmentation efficiently.

● Certain CPU technqiues (e.g., recomputing forwarding pointers
on the fly [1]) do not pay off on GPUs.

[1] D. Abuaiadh, Y. Ossia, E. Petrank, U. Silbershtein. An Efficient Parallel Heap Compaction Algorithm. OOPSLA 2004

06/23/2019 CompactGpu - ISMM 2019 32

Appendix: Microbenchmarks

06/23/2019 CompactGpu - ISMM 2019 33

Achieved Fragmentation Level

06/23/2019 CompactGpu - ISMM 2019 34

Number of Defragmentation Passes

06/23/2019 CompactGpu - ISMM 2019 35

Number of Object Copies

06/23/2019 CompactGpu - ISMM 2019 36

Benchmark: N-Body with Collisions

● Memory consumption drops faster.

● Performance improvement: 12%

06/23/2019 CompactGpu - ISMM 2019 37

Benchmark: Generational Cellular Automaton

● Memory consumption drops faster.

– Too much defragmentation leads to overcompaction.

● Performance improvement: 6%

06/23/2019 CompactGpu - ISMM 2019 38

Reducing Heap Scan Area

● Allocator has detailed information about the structure of allocations.

● Only Cell has a pointer to Agent. Only look into allocated[Cell] blocks.

06/23/2019 CompactGpu - ISMM 2019 39

Background: GPU Architecture

● 20 symmetric multiprocessors (SMs)

● 128 CUDA cores per SM

● Total: 20*128 = 2560 CUDA cores

● But in reality: 20*4 physical cores,
each operating on 128-byte vector
registers

Memory controller accesses memory
in 128-byte blocks

Source: NVIDIA GeForce GTX 1080 Whitepaper

CUDA gives programmers the
illusion of having 2560 cores.

CUDA gives programmers the
illusion of having 2560 cores.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

