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Abstract

We present the concept, the implementation, and an evaluation of Matriona, a
module system for and written in Squeak/Smalltalk. Matriona is inspired by
Newspeak and based on class nesting: classes are members of other classes,
similarly to class instance variables.

Top-level classes (modules) are globals and nested classes can be accessed
using message sends to the corresponding enclosing class. Class nesting effec-
tively establishes a global and hierarchical namespace, and allows for modular
decomposition, resulting in better understandability, if applied properly.

Classes can be parameterized, allowing for external configuration of classes, a
form of dependency management. Furthermore, parameterized classes go hand
in hand with mixin modularity. Mixins are a form of inter-class code reuse and
based on single inheritance.

We show how Matriona can be used to solve the problem of duplicate classes in
different modules, to provide a versioning and dependency management mech-
anism, and to improve understandability through hierarchical decomposition.
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Zusammenfassung

Diese Arbeit beschreibt das Konzept, die Implementierung und die Evaluierung
von Matriona, einem Modulsystem für und entwickelt in Squeak/Smalltalk. Ma-
triona ist an Newspeak angelehnt und basiert auf geschachtelten Klassen: Klassen,
die, wie zum Beispiel auch klassenseitige Instanzvariablen, zu anderen Klassen
gehören.

Klassen auf oberster Ebene (top-level Klassen) sind globale Objekte. Auf ver-
schachtelte Klassen kann zugegriffen werden, indem eine Nachricht mit dem
Namen der Klasse an die entsprechende äußere Klasse gesendet wird. Durch
das Verschachteln von Klassen entsteht ein globaler, hierarchischer Namensraum,
welcher es erlaubt, Programme modular aufzuteilen. Dadurch kann die Verständ-
lichkeit der Programmstruktur verbessert werden.

Klassen können parametrisiert sein. Dadurch können Klassen von außen kon-
figuiert werden (eine Form von dependency management). Außerdem ergibt sich
durch parametrisierte Klassen die Möglichkeit, Mixins zu implementieren. Mi-
xins sind Ansammlungen von Methoden, die bei mehreren Klassen eingebettet
werden können, und auf Einfachvererbung abgebildet werden.

Mit Matriona ist es möglich, Klassen mit gleichem Namen in verschiedenen
Modulen zu haben. Außerdem stellt Matriona ein Versionierungssystem und ein
Verfahren zur Verwaltung von Abhängigkeiten (Bibliotheken etc.) bereit. Dar-
über hinaus kann mit hierarchischer Dekomposition die Verständlichkeit von
Programmtext und dessen Struktur verbessert werden.
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1. Introduction

This thesis describes the concept, the implementation, and concrete use cases
of Matriona, a module system for and written in Squeak/Smalltalk. Matriona
used to be a popular Russian name and is believed to be the origin of the name
Matryoshka [27], also known as Russian doll. Matryoshka dolls are wodden dolls
that can be nested in each other (Figure 1.1), and are a metaphor for class nesting,
the most fundamental concept of Matriona.

Figure 1.1.: Matryoshka doll1, also called Russian doll. It consists of multiple wodden
pieces that can be nested in each other.

Before explaining the concept, we will elaborate what modularity is and why it
is desirable. Then, we will go into more detail about the Smalltalk programming
language and explain what modularity means in the context of Squeak/Smalltalk.

1.1. Modularity

What is modularity? According to Myers, “modularity is the single attribute of
software that allows a program to be intellectually managable” [56]. This thesis
describes a module system for the Squeak programming language, i.e., a system
that should help the programmer in writing modular code. According to Meyer,
there are five requirements that a method or system should satisfy to be “worthy
of being called modular” [53].

1Copyright: S. Faric, https://www.flickr.com/photos/tromal/6901848291/, CC BY 2.0 License
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1. Introduction

Decomposability If a design method supports modular decomposability, it
helps the programmer in breaking down big components into smaller one. These
subcomponents should be less complex, serve a different purpose, and be mostly
independent of each other. Meyer compares decomposability with division of
labor: every subcomponent does a smaller, in itself less complex part of the job.
Decomposability also benefits independent development of subcomponents, if
these are mostly independent of each other. An example of a method supporting
decomposability is top-down design.

Composability If a design method supports modular composability, it helps
the programmer in building more complex components out of smaller ones. This
encourages code reuse; subcomponents do not have to be implemented more than
once. An example of composability are libraries. They fulfill a certain purpose,
but cannot work on their own. Instead, they were designed to be used in another
program, building complex functionality based on smaller pieces.

Understandability If a design method supports understandability, it helps pro-
grammers getting an overview and a broad understanding of an application
more quickly. This goes hand in hand with decomposability: every subcomponent
should be less complex and, therefore, easier to understand than the composed
component. This is important to keep software maintainable and makes software
development more time-efficient, as it reduces development time, because the
programmer has to spend less time understanding the system.

Continuity If a design method supports continuity, it is easier to make changes
to the program, since a single change should ideally only affect a single or at
least a small number of modules. This can be a side effect of decomposability, if
done properly [64]. Continuity also makes it easier to extend the behavior of a
program.

Protection If a design method supports protection, it helps the programmer
writing code where program malfunctions are confined to a single or a small
number of modules, instead of spreading across the entire program. For example,
every subcomponent should have a well-specified interface and could check input
parameters before running the actual implementation.

1.2. The Squeak Programming Language

Smalltalk is a dynamically-typed, object-oriented, class-based programming lan-
guage and Squeak2 [41] is a Smalltalk-80 dialect. It was originally developed by
Alan Kay, Dan Ingalls, and Adele Goldberg. Dan Ingalls described Smalltalk-80

as a project whose purpose it is to “provide computer support for the creative

2http://squeak.org

2
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1.3. Outline of this Thesis

spirit in everyone.” In his article Design Principles Behind Smalltalk [42], which
appeared in August 1981 in the BYTE Magazine, he mentions some of the most
fundamental principles behind the Smalltalk project. Some of these go hand in
hand with modularity and can be further supported by a good module system.

• “Personal Mastery: If a system is to serve the creative spirit, it must be en-
tirely comprehensible to a single individual.” A module system can support
understandability of a system by breaking up big components into smaller
ones (hierarchical decomposition) and hiding irrelevant implementation details.

• “Factoring: Each independent component in a system would appear in only
one place.” A module system can encourage code reuse by making it easy to
share behavior and reuse it in other modules, eliminating code duplication.

• “Modularity: No component in a complex system should depend on the in-
ternal details of another component.” Through information hiding, a module
system can encourage programmers not to rely on implementation-specific
behavior. A notion of what is considered a public interface can help keeping
modules exchangable and increases understandability, since only the public
interface should be sufficient to understand what a module’s capabilites are.

• “Good Design: A system should be built with a minimum set of unchangable
parts; those parts should be as generic as possible.” Consequently, if we are
to create a module system for Smalltalk, that system should build on top of a
single fundamental concept, and all features and use cases should evolve out
of this concept in a natural way, without any special corner cases.

1.3. Outline of this Thesis

The remainder of this thesis is structured as follows. Section 2 gives an overview
of modular programming in Squeak/Smalltalk, shows what is possible already,
and describes concrete points where we see room for improvement. Section 3

describes the concept of our module system in an abstract way, without diving
into notation or implementation details. Section 4 describes the implementation
of our module system in Squeak/Smalltalk as well as corner cases and pitfalls.
Section 5 describes concrete use cases and provides examples, implemented in
our module system, based on the shortcomings motivated in Section 2. Sections 6

and 7 compare our implementation with other existing systems, and give an
overview of the next steps, respectively. Finally, we give a short summary of our
concept and implementation in Section 8.

3





2. Modular Programming in Squeak

In this section, we describe and evaluate how Squeak can be used to write mod-
ular programs at the moment. Based on our observations and programming
experience with Squeak, there are three areas where we see room for improve-
ment. For every area, we will describe what the problem is and how it is currently
solved in Squeak.

Class-based Modularity In pure Smalltalk, classes are the highest level of mod-
ular units. Classes are first-class objects and can be passed around. This function-
ality can be used to make behavior interchangable and promotes loose coupling.
Classes are Smalltalk’s way of sharing behavior with a number of objects, i.e., it is
a form of code reuse. Squeak also supports Traits, a design method for composing
classes out of pieces of behavior (see Section 6.4.3).

Smalltalk is, as most object-oriented and class-based programming languages,
amenable to well-established software design patterns [34], making it easier to
write maintainable and understandable code.

2.1. Duplicate Class Names

In Squeak, there can be only one class with a certain name, limiting code reuse
and, therefore, hindering modular composability. Whenever the programmer tries
to add another class with the same name, a conflict occurs. When source code is
loaded into the system with the Monticello source control system or manually,
the system asks the programmer if the already existing class should be replaced.
As a workaround, it is good practice to add unique namespace prefixes to all
class names within an application.

Squeak has packages [59], but these are not used as namespaces. Their purpose
is to make it easier to find existing classes (like method protocols). They are also
used as deployment units. The programmer does usually not load single classes
into the system. Instead, packages (groups of classes) are loaded.

Squeak environments provide a way to have multiple classes with the same
name in one image. However, they suffer from poor tooling and do not integrate
well with some of the other goals for our system. See Section 6.1.2 for a detailed
discussion of Squeak environments and why we did not use them in Matriona.

Example Consider the game Breakout (Figure 2.1, see also Section 5.3). This
application uses Bro as a prefix for all classes. If we would not use namespace
prefixes, generic class names like Block or Ball would be likely to collide with

5



2. Modular Programming in Squeak

BroBreakout
BroBall
BroBlock
BroBoundary
BroBreakout
BroExplosion
BroLevelBuilder
BroLevelStatistics
BroLevelStatisticsItem
BroLevelView
BroLevelWorld
BroMenuLabel
BroMenuView
BroPowerup
BroPowerupAccelerate
BroPowerupBall
BroPowerupDecelerate
BroPowerupEnlarge
BroPowerupShrink
BroRacket
BroView
BroWelcomeView

Figure 2.1.: Example: Breakout class structure. All classes have the Bro namespace prefix
and are contained in the package BroBreakout.

other classes. On the other hand, if all application and library developers adhere
to this convention, it is unlikely that class name clashes occur.

2.2. Dependency Management

Dependency management describes the task of keeping track of dependencies
and ensuring that required dependencies are available within the application/li-
brary in question. We distinguish between two cases of dependency management:
internal dependency management, i.e., the application specifies all dependencies,
and external dependency management (external configuration), i.e., users/clients
of the application specify dependencies. But before managing dependencies, we
need a versioning concept that allows us to represent library versions in an image.

Versioning There are situations when it is useful to have multiple versions of
the same library in one image; for example, if there are two different applications
installed and both require the same library, but in different versions [83]. Consider,
for example, that application A requires two libraries B and C, both of which
require dependency D, but in different versions (Figure 2.2), which is called a
transitive dependency version conflict. B requires D in version 1.1 and C requires D

6



2.2. Dependency Management

in version 3.2. Both B and C might function properly with version 3.2 of D if D’s
interface and behavior have not changed. However, we do usually not know this
in advance and especially with new major versions, interfaces tend to change.
Old versions of a library might have bugs that an application has to work around.
An application might then not work with a newer library where the bug is fixed.

A
B

C
D1.1

3.2

Figure 2.2.: Example: Transitive dependency
version conflict. Two different versions of
D are required for running A.

Therefore, we need a versioning
mechanism in Matriona, that helps us
storing and referencing different ver-
sions of the same application or library
in one image. Part of this mechanism
must be a way to develop new library
versions, and a mechanism to refer-
ence a certain version.

Internal Dependency Management
In this case, every application or li-
brary itself specifies which artifacts

(and their versions) it depends on. The application effectively maintains the list
of dependencies itself. Consequently, the application is coupled with its depen-
dencies and cannot be used with different versions or implementations without
changing its source code.

A form of internal dependency management is dependency injection, a mecha-
nism that is heavily used in the Java world [70]. What a class specifies is that
it requires some dependency implementing a certain interface, but not what ex-
act dependency it is or in what version. Dependency injection is also known
as inversion of control [52]: control over dependencies is shifted from the classes
using dependencies to the injector, a component that is usually part of the appli-
cation and knows about all dependencies. The benefit of this approach is that all
dependencies are managed at a central position in the application.

External Configuration In this case, the dependency management is delegated
to the client/user of an application or library. What the application specifies is
that it requires some dependency implementing a certain interface, but not what
exact dependency it is or in what version. Concrete dependencies are provided by
the client. External configuration is useful for dependencies with variation points,
i.e., modules that can be used with different dependencies, based on the use case.
For example, an application might want to use a graph library with an adjacency
list instead of an adjacency matrix data structure, if it operates on sparse graphs;
both implement the same interface. Another example is an image editing library
that requires some dependency for exporting images to the file system, but it is
up to the client to decide which file format to use.

External configuration is beneficial for modularity, because it supports loose
coupling of applications and dependencies. This, in turn, promotes understand-
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ability, maintainablity, and exchangability (code reuse), because an application
cannot rely on implementation details of a loosely bound dependency.

Dependency Management in Squeak In Squeak, there can currently only be
one version of a library or application installed at a time. Monticello is used as a
source code management system and loads new versions of the source code into
an image. Metacello is a package management system (see Section 6.2.4), similar
to Maven in Java. Every Metacello package has a configuration class containing
a list of external dependencies and internal packages to load for every version,
along with the location of an external repository where the packages should be
loaded from [69].

External configuration can be simulated in Smalltalk by writing class construc-
tors that accept other dependencies as parameters. These dependencies should
then be stored in instance variables and only be accessed using these instance
variables. However, this technique has two pitfalls. Firstly, dependencies have to
be forwarded to all other classes, resulting in boilerplate code. Secondly, only
instance methods can benefit from external configuration, because class methods
are shared among instances (configurations) of the class and do not have access
to instance variables.

What is missing is a structured way to reference dependencies. The source code
should not be filled with references to external dependencies. It should be easy
to replace one dependency with another one or to change the version number of
a dependent module. Furthermore, running two applications requiring the same
library in different versions in one image should not be a problem.

2.3. Hierarchical Decomposition

Smalltalk packages allow the programmer to group together what belongs to-
gether [29]. This is especially useful in big projects with many classes and allows
for a form of modular decomposition. Different criterias for modular decompo-
sition have been proposed: e.g., functional decompositon (making every step in
the flowchart a module) or information hiding [64, 65]. The following list shows
some benefits of good modular decomposition.

• Changability (continuity): only few classes are affected when changing a detail.
• Independent development: classes can be developed in parallel.
• Understandability: in order to understand the behavior of a class, it is sufficient

to read code within that class.

What we want to achieve is hierarchical decomposition [10], which is in a basic
form realized in Java packages, Ruby namespace modules, or Python modules. It
can increase comprehensibility of the overall system when it acts as some kind of
decision tree that helps the programmer finding a submodule corresponding to a
certain functionality in an unknown application.
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If the source code is functionally decomposed in a hierarchical way [87], it is
also easier to understand single submodules of the system. The reader of the
source code might only be interested in a certain level of detail (e.g., no low-level
functionality), and then skip deeply nested submodules [91] (information hiding
or abstraction). Since in functional decomposition, the purpose of nested modules
is usually only to serve their enclosing modules, readers can start off with a
high-level idea of what the module is doing by going through the first few levels
of nesting, and dive in deeper as needed.

Therefore, one of the requirements for our system is to provide a mechanism for
hierarchical code decomposition that is more than just one level deep (Smalltalk
packages).

Example Consider the game SpaceCleanup, which is a simple bomberman clone
(Figure 2.3, see also Section 5.3). The source code for this game is organized
in multiple packages. For example, all items in the game are grouped in the
package SpaceCleanup-Items. Besides this obvious single-level decomposition,
the game is actually already functionally decomposed in a hierarchical way. For
example, ScuLevel represents a level in the game. A level consists of multiple tiles
(ScuTile). A tile cannot exist without a level; its sole purpose is to serve ScuLevel.
Similarly, items always belong to a tile and cannot be used without a tile. All in
all, SpaceCleanup is already functionally decomposed, but this decomposition is
not fully reflected in the class organization.
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SpaceCleanup-Core

ScuEventDispatcher
ScuGame
ScuGameBuildState
ScuGameConfigState
ScuGameOverState
ScuGamePausedState
ScuGameRunningState
ScuGameState
ScuGameWonState
ScuMonsterStrategy
ScuMonsterRandomStrategy
ScuMonsterToPlayerStrategy

SpaceCleanup-Items

ScuBucket
ScuDestructibleItem
ScuFloor
ScuItem
ScuMonster
ScuMovingItem
ScuPickUpItem
ScuPlayer
ScuPortal
ScuSlime
ScuWall
ScuWater

SpaceCleanup-Level

ScuLevel
ScuLevelBuilder
ScuGridPatternLevelBuilder
ScuRandomLevelBuilder
ScuTile

SpaceCleanup-Resources

ScuResourceManager

SpaceCleanup-UI

ScuCheatWindow
ScuConfigurationWindow
ScuControls
ScuGameInformation

Figure 2.3.: Example: SpaceCleanup class organization. All classes have the Scu names-
pace prefix and are grouped in five packages, according to their responsibilities.
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In this chapter, we describe the main concept of this work: classes as class mem-
bers. Similar concepts are part of programming languages like Java, Ruby, Python,
and Newspeak. Our concept follows closely the Newspeak notion of nested
classes, but without making invasive changes to the Smalltalk programming
language or the underlying virtual machine.

3.1. Nested Classes

In Smalltalk, every object is an instance of a class, defining the object’s instance
variables and the messages it understands. Consequently, a class is also an in-
stance of its so-called meta class. Every meta class is an instance of Metaclass
(Figure 4.1). In the remainder of this work, we denote the meta class of a class C
by C class. Every Smalltalk image has a globals dictionary1, mapping symbols
to class objects (or other objects), so that references to classes can be resolved at
compile time. This implies that all references to classes are early bound.

Matriona extends the Smalltalk class organization as follows: in addition to
regular methods, we introduce the concept of class generator methods. Such a
method generates a class and is associated with a set I of instance methods and a
set C of class methods. Whenever the method is invoked, the system first executes
the method body, then adds I to the resulting class and C to the resulting meta
class, and finally returns the resulting class. For performance reasons, Matriona
also caches the result, meaning that a class is only generated once2.

Details After some initial experiments, we decided to allow class generator
methods only as class-side methods. Class generators as instance-side methods
seem to provide neglectable benefits and make the implementation of our system
more complicated. We discuss instance-side class generator methods in more
detail in the Section 7.1.

A class generated by a class generator method is anonymous: it is not listed
in the globals dictionary and can only be referenced using message sends to its
enclosing class3. Consequently, its name is a concatenation of all class names on
the path from the top-level class to the class in question.

1Squeak also supports environments, effectively making it possible to compile methods in the
context of another globals dictionary. See Section 6.1.2 for more details.

2Parameterized classes are an exception.
3It can also be referenced by sending the class message to one of its instances
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SpaceCleanup
+ open

+ Level

+ tileAt:
+ Tile

+ addItem:
+ render

+ step

+ Resources

+ render

Figure 3.1.: Example: nested classes. A class
can have class-side member classes.

Notation and Example Figure 3.1
shows an example of nested classes in
Matriona. SpaceCleanup is a top-level
class, i.e., it is part of the globals dic-
tionary and known everywhere in the
system; it can be referenced by just
writing the identifier SpaceCleanup. It
has one instance method step and two
class methods open and Level. In ac-
cordance with UML notation, class-
side method selectors are underlined.
SpaceCleanup class»Level is a class

generator method that is associated
with a set of instance methods
{render, tileAt:} and a set of class
methods {Tile}. The name of the class
it generates is SpaceCleanup Level,
which is in that case also a valid Small-
talk code expression that evaluates to

the generated class. SpaceCleanup class»Level class»Tile is a class generator
method that generates SpaceCleanup Level Tile. Note that we use the » notation
to not only reference methods but also the classes they generate, in case they are
class generator methods.

Top-level classes are called modules. All other classes are called nested classes.
The class in which another class is nested is called the enclosing class.

3.2. Accessing the Lexical Scope

Within a method, it might be necessary to access the lexical scope, in order to
send messages to enclosing classes. For example, a method might want to ref-
erence a class defined in an enclosing class (e.g., SpaceCleanup Resources in
SpaceCleanup class»Level class»Tile»render). For this reason, Matriona intro-
duces new keywords, in addition to self and super, which are already present
in every Smalltalk dialect. This is a point where we extended the programming
language. Figure 3.2 gives an overview of all method lookup-related keywords in
the system.

3.2.1. self Keyword

This keyword is used make a message send within an object. The receiver is the
same object as the sender and the lookup starts at the (polymorphic) class of
the receiver. If that class does not provide a corresponding method, the lookup
continues in the superclass hierarchy. If no class in the superclass hierarchy has a
corresponding method, a MethodNotUnderstood error is raised.
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se
lf

enclosing

outer

sc
op

e

su
pe

r

Figure 3.2.: Keywords for superclass and lexical scope access. The lookup starts at self,
and continues with the lexical scope.

3.2.2. super Keyword

Item
+ image

MovingItem
+ defaultImage

Monster
+ image

^ Resources
    errorPic

^ super
    image

^ Resources
    monster

Figure 3.3.: Example: Binding of super. The
method lookup starts at the superclass of
the calling method’s class.

This keyword is also used to make
a message send within an object.
Again, the receiver is the same ob-
ject as the sender, but the lookup
starts at the superclass of the sender’s
method class. Note that super is
bound to the superclass of the method
class, not the superclass of the re-
ceiver’s class. For example, in Fig-
ure 3.3, Monster new defaultImage re-
turns Resources errorPic, because,
in MovingItem»defaultImage, super is
bound to Item, even though the re-
ceiver Monster new is an instance of
Monster.

3.2.3. enclosing Keyword

This keyword is an implementation ar-
tifact. It can be used for meta program-
ming purposes, but should be avoided

in general. It is used to make a message send to the class that contains the current
class. Consider, for example, that we want to send a message levelBackground
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to class SpaceCleanup Resources within SpaceCleanup class»Level»render in
Figure 3.1. Either one of the following two statements works in this case4.

• SpaceCleanup Resources levelBackground.
• enclosing Resources levelBackground.

enclosing is a keyword that evaluates to the method owner’s enclosing class
upon method compilation. Note that enclosing is bound to the method’s lexical
scope, not the receiver class’ lexical scope.

Figure 3.4 illustrates the binding of enclosing. In SpaceCleanup class»Item
class»player, enclosing is bound to SpaceCleanup. In contrast, UberSpaceClean-
up class»Item class»evilMonster binds enclosing to UberSpaceCleanup. Con-
sequently, SpaceCleanup Item monster calls SpaceCleanup Resources monster
and so does UberSpaceCleanup Item monster, even though the receiver of mon-
ster is UberSpaceCleanup Item and not SpaceCleanup Item in the latter case.
Note that UberSpaceCleanup Item evilMonster calls the method in UberSpace-
Cleanup Resources, because evilMonster’s lexically enclosing class is UberSpace-
Cleanup.

SpaceCleanup

+ Item
+ monster

UberSpaceCleanup

^ enclosing 
   Resources monster

+ player

+ Resources
+ monster
+ player

^ enclosing 
   Resources player

+ Item

+ Resources
+ evilMonster

+ evilMonster

^ enclosing 
   Resources evilMonster

Figure 3.4.: Example: Binding of enclosing. The keyword is bound to enclosing class of
the class where the method containing the keyword is contained.

Note that enclosing can be used for meta programming purposes; however, it
should be avoided in general, because it can lead to fragile code that makes too
many assumptions about the structure of the class nesting. A later refactoring
could then lead to broken code. Probably for the same reason, Smalltalk does not
have a super keyword that does the lookup only in the superclass5 (single-level
super). Matriona provides a scope keyword that should be used instead.

4The enclosing class of an object that is not a class is its class’ enclosing class.
5However, there is a method Class»superclass.
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3.2.4. enclosing Method

In addition to enclosing, every class in the system has a method enclosing that
returns the enclosing class (owner) of the receiver, making it possible to send
messages to enclosing classes which are more than one level away. If, for example,
in Figure 3.1, SpaceCleanup class»Level class»Tile»render wants to send the
message tileBackground to SpaceCleanup Resources, either one of the following
two statements works.

• SpaceCleanup Resources tileBackground.
• enclosing enclosing Resources tileBackground.

Again, the method enclosing should be avoided in general, but is useful to
implement parts of our system with code written in the system itself and for
meta programming purposes. The statement enclosing enclosing would be
somewhat similar to a super super statement. Arguably, this can result in verbose
and complicated code, and is at the very least questionable with regards to the
Law of Demeter. Note that, in contrast to the outer keyword, the message send
of enclosing to enclosing is no longer bound to the lexical scope of the method.

3.2.5. outer Keyword

This keyword is used to make a message sends to classes in the lexical scope.
Whenever a message is sent to outer, the message is first interpreted as a send
to enclosing. If that message send fails, the message is sent to the second-level
enclosing class in the current lexical scope. Eventually, the message is sent to a
top-level class, if no other class understands the message. If even that message
send is not understood, the selector is looked up in the globals dictionary. If the
selector is absent, a MessageNotUnderstood error is raised.
outer is similar to super, with the difference that outer does a horizontal

lookup (lexical scope) and super does a vertical lookup (superclass chain). Note
that messages sent to outer are sent to an object different from self.

Example Figure 3.5a illustrates the lookup of message sends to outer. Consider,
for example, that the method render in SpaceCleanup class»Level class»Tile
calls outer Resources tileBackground. The method SpaceCleanup class»Level
class»Tile»render as well as the method UberSpaceCleanup class» Level class
»Tile»render call SpaceCleanup Resources tileBackground in this case, because
outer is bound to the lexical scope of the method.

Figure 3.5b shows why it is important that outer is bound to the lexical scope.
In this example, SpaceCleanupTest DummyLevel is a subclass of SpaceCleanup
Level. If the outer lookup simply traversed the chain of enclosing classes of
the (late bound) receiver class, i.e., first lookup in self enclosing, then self
enclosing enclosing, etc., the message send of Resources would fail in Space-
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CleanupTest class»DummyLevel class»Tile»render, because SpaceCleanupTest
does not understand Resources.

SpaceCleanup

+ Level

+ render

UberSpaceCleanup

Tile+ 

+ Resources

+ Resources

(a) Subclassed top-level class

SpaceCleanup

+ Level

+ render

SpaceCleanupTest

Tile+ 

+ Resources

+ DummyLevel

(b) Subclassed nested class with different enclosing class

Figure 3.5.: Example: outer keyword. Message sends to outer are looked up with respect
to the lexical scope of the method, instead of following the chain of enclosing classes
(owner hierarchy).

3.2.6. scope Keyword

This keyword combines super and outer: a message sent to scope is first treated
as a self send. If the message is not understood, it is treated as an outer send.

Matriona first looks up methods in self, then in the superclass hierarchy,
and then in the lexical scope. This is how the method lookup in Java works, also
known as comb semantics [15]. We effectively decided to use Smalltalk semantics by
default (i.e., first self, then super) and continue with the lexical scope afterwards.
Newspeak uses a different lookup: it first looks for a method in the receiver’s
class, then in the lexical scope, and finally in superclass hierarchy [17].
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3.2.7. Implicit scope Receiver

In Matriona, references to globals are in fact message sends with scope as implicit
receiver. This should make it easier for Smalltalk programmers to write code in
Matriona, even if they do not know about enclosing and scope. It also makes the
code less verbose and easier to read.

Whenever code references an identifier that is not a temporary variable, not an
instance variable, and not a special object/keyword6, the compiler replaces that
identifier with a message send to scope7.

Consider, for example, that we want to reference class SpaceCleanup Resources
within SpaceCleanup class»Level class»Tile»render in Figure 3.1. Either one
of the following two statements works in this case.

• SpaceCleanup Resources.
• enclosing enclosing Resources.
• outer Resources.
• scope Resources.
• Resources.

In this example, we used the implicit scope receiver for class lookup, which
is in our opinion the most useful case. However, any unary method in self, the
lexical scope, or the superclass hierarchy can be looked up this way. We think
that this is bad practice and should be used only for class generator methods8. It
is allowed in Newspeak and other programming languages like Java, but these
programming languages support implicit receivers by default. In Smalltalk, this
is not the case and looks unfamiliar. Classes are, however, just globals in Smalltalk
and we emulate the notation for accessing them with an implicit scope receiver
in Matriona.

Note that only unary messages can have an implicit scope receiver, since we
would have to change the Smalltalk syntax, otherwise.

3.3. Parameterized Classes

In Matriona, classes are accessed using message sends. Since messages can have
parameters, it seems natural to have parameterized class accessor methods, and,
therefore, parameterized classes. All examples shown in the previous sections use
unparameterized classes, i.e., class generator methods are always unary. Class
generator methods can, however, also have binary selectors or selectors with a
higher arity.

Parameterized classes can be used to make modules externally configurable or
to implement mixins. We will present some conrete use cases in Section 5.

6self, super, thisContext, scope, outer, enclosing
7This is the only point where we changed the compiler. Keywords are bound as method literals.
8It might be forbidden in future versions of Matriona.
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The arguments passed to a parameterized class generator method are consid-
ered when a message is sent to enclosing. At first, the system tries to send the
message to the enclosing class. If that fails, Matriona checks if the selector cor-
responds to one of the parameter names in the enclosing class’ class generator
method.

A: p1

+ B: p2
+ p2
+ C: p3

+ foo

Figure 3.6.: Example: Parameterized classes.
A class can have parameters accessible
with message sends to enclosing.

Consider, for example, that method
A: class»B: class»C: class»foo (see
Figure 3.6) contains the following state-
ments.

• scope p3: method lookup succeeds
in A: class»B: class»C: and re-
turns the class parameter p3.

• scope p2: method lookup succeeds
in A: class»B: and calls the method
p2, which shadows the class param-
eter p2.

• scope p1: method lookup succeeds
in A: and returns the class parame-
ter p1.

3.4. Inheriting Nested Classes

Nested classes are accessed using methods returning the generated class. They
are similar to class instance variables in a sense that nested classes belong to the
enclosing class object. Therefore, a subclass of the enclosing class has its own
nested class, i.e., the nested classes might have the same methods and variables
declared, but they are different objects. Nested classes can be overridden in
subclasses of enclosing classes, just as regular methods can be overridden. The
following paragraphs give an overview of how a subclass of an enclosing class
can customize the nested class.

Override with Nested Class A subclass of an enclosing class can define a new
nested class. The programmer simply adds a new class generator method with
the same selector to the subclass. The superclass will keep using the old nested
class, whereas the subclass will use the new one, because the method lookup
ends in the subclass when the corresponding class accessor method is found. The
new nested class will only have the methods defined for the subclass’ nested class
and not inherit or copy any methods from the superclass’ nested class.

Override with Regular Method A subclass of an enclosing class can replace
(override) a nested class with a regular method. The programmer simply adds a
new method which is not a class generator method to the subclass.
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Extend Inherited Nested Class without Subclassing A subclass can extend the
inherited nested class, i.e., the nested class in the subclass will have the same
superclass as the nested class in the superclass. However, the nested class in the
subclass will have all methods defined for the nested class in the superclass and
additionally all methods defined for the nested class in the subclass. Duplicate
methods will be replaced, similarly to extension methods in Squeak.

A1

+ B
+ foo

A2

+ B
+ bar

^ 1

+ bar + qux

^ 2 ^ 3^ 4^ super B

(a) Extending inherited nested classing

^ 1^ 2 ^ super bar^ 4^ super B
    subclass

A1

+ B
+ foo

A2

+ B
+ bar

+ bar + qux

(b) Subclassing inherited nested classing

Figure 3.7.: Example: Extending and subclassing nested classes. Subclassing inherited
nested classes leads to parallel class hierarchies.

Figure 3.7a shows an example of a nested class extension. Class A2 is a subclass
of A1, which defines a nested class B. Therefore, both classes A1 and A2 have a
nested class B. A2 extends B by perfoming a super call. The following list gives an
overview of how the classes B behave.

• A1 B foo: returns 1.
• A1 B bar: returns 2.
• A1 B qux: raises MessageNotUnderstood, because qux is not defined on A1 B.
• A2 B foo: returns 1, because A2 B has all methods defined for A1 B.
• A2 B bar: returns 3, because that method was replaced in A2 B.
• A2 B qux: returns 4.
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Note that A1 B and A2 B have the same superclass, but are different class objects.
A2 B is not a subclass of A1 B. When A2 B is invoked for the first time, Matriona
first generates the class A1 B (because of the super call) and caches it for A2 B9.
That class is then reinitialized according to A2 B (without making a subclass), i.e.,
all methods defined for A2 B are added. A subsequent call to A1 B will not return
the previous generated and extended class for A2, because the class cache works
on a per-receiver basis.

Also note, that if we actually wanted to extend A1 B and alias it as A2 B, which
is technically similar to an extension method in Smalltalk (see Section 5.8), then
A2 B should be defined as ˆ A1 B, because the receiver of the message B will then
be A1 instead of A2.

At the moment, there is no way to add additional instance variables or class
variables to an extended nested class, because the class definition (containing the
definition of variables) is done in the super call.

Subclass Inherited Nested Class A subclass can subclass the inherited nested
class, i.e., the nested class in the subclass is a subclass of the nested class in the
superclass. Effectively, this results in a parallel class hierarchy. The nested subclass
can override methods and use super to call methods in the nested superclass.

Figure 3.7b shows an example for subclassing a nested class, which is similar
to Figure 3.7a. Note that A2 B is now a subclass of A1 B and super calls in A2 B
now start their lookup in A1 B. The new subclass A2 B behaves like the class in
the previous example, except for A2 B bar. That statement returns 2, because the
super call invokes A1 class»B class»foo.

9Caches are receiver-specific.
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In this chapter, we present the implementation of Matriona and explain briefly
how the system is used. Larger examples and concrete use cases will follow in
the next chapter.

4.1. Meta Model for Nested Classes

Matriona has a simple meta model for describing (nested) classes and their
methods. The graphical user interface operates exclusively on the meta model
and makes changes to it. The meta model can then be instantiated to generate the
actual classes. When changes to the meta model are made, these changes can be
applied to already existing instantiations of the model, giving programmers the
feeling of working with a live system.

Smalltalk-80 Class/Meta Model Squeak already comes with a meta model:
objects are instances of classes; consequently, classes are also instances of a classes.
In Smalltalk, every class is an instance of its own meta class, which is in turn an
instance of Metaclass (Figure 4.1).

Foo

Object

ProtoObject

Foo class

Object class

ProtoObject class

Class

Behavior

Class class

Behavior class

Metaclass Metaclass class

Figure 4.1.: Squeak class model. Every class is an instance of its meta class. Meta classes
are instances of Metaclass. Meta classes and non-meta classes form a helix [22], con-
necting the meta class hierarchy with the non-meta class hierarchy.
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Matriona allows class generation at runtime: class generator methods generate
classes along with their respective meta classes. Therefore, we need a specifica-
tion/blueprint that describes how a class generator method should construct a
class. At first glance, it might seem logical to use meta classes; after all, a meta
class is the class of a regular (non-meta) class and classes are instance generators.
However, meta classes cannot be used as class object generators in a way required
in our system for two reasons.

Firstly, meta classes do not have any information about their non-meta class
counterpart: for example, they do not know anything about their instance meth-
ods or their instance variables. Instantiating a meta class would not generate a
functional class object, which is why Smalltalk prohibits generating new instances
of a meta class. In fact, the class ClassBuilder is used to create new classes and
it always creates class objects along with their meta class objects.

Secondly, Smalltalk supports defining methods on the instance side and on the
class side. Consequently, we do not only need to generate class objects but also
meta class objects. All meta classes are an instance of Metaclass. But if we wanted
to generate different meta classes, we would need different Metaclass classes,
generating their corresponding meta classes. In some programming languages,
the instance-of chain carries on infinitely; Ruby is an example [67]. However, in
Smalltalk, every meta class is an instance of Metaclass and this is where the
instance-of chain recurses: Metaclass is an instance of Metaclass class, which
is an instance of Metaclass.

For this reason, we cannot use the Smalltalk-80 meta model to store information
about nested classes and to generate new classes on the fly. We use our own simple
meta model instead.

Nested Classes Meta Model Figure 4.2 shows the meta model in our system.
The meta model is built around specifications: there are specifications for classes,
meta classes, and methods. A specification describes how its corresponding object
is built. ClassSpecifications generate classes, MetaclassSpecifications gen-
erate meta classes, and MethodSpecifications generate methods. Since classes
cannot exist without their respective meta classes, a class specification is always
linked to its meta class specification and vice-versa. When a class specification is
instantiated, the system generates both the class and the meta class. Meta class
specifications cannot be instantiated on their own.

Class Specification A class specification describes classes. It has a collection of
MethodSpecifications, representing instance methods of the class. Upon instan-
tiation, all method specifications are instantiated within the target class. For every
class specification, there is a corresponding method specification containing the
source code of the class generator method in the parent’s1 method dictionary.
This method specification determines (when executed in the running system) to
which class the methods will be added (target class).

1The parent of a class specification is the class specification of the enclosing class.

22



4.1. Meta Model for Nested Classes

-parent
MemberSpecification

MethodSpecification
-methodDict
BehaviorSpecification

-theMetaClassSpec
ClassSpecification

-theNonMetaClassSpec
MetaclassSpecification0..*

0..*

-classDict

-instantiations
-classCache

parent

methodDict

classDict

the(Non)Meta
ClassSpec

-theMethodSpec

-theClassSpec

1

0..1

theClassSpec

theMethodSpec

Figure 4.2.: Meta model for nested classes in Matriona. Class specifications are containers
for method specifications. Meta class specifications can have additional nested class
specifications.

Meta Class Specification A meta class specification describes meta classes. It
has a collection of MethodSpecifications, representing class methods of the class
(i.e., instance methods of the meta class). Upon instantiation, all method specifi-
cations are instantiated within the target class’ meta class. Consequently, there is
no method specification in the parent for a meta class.

Meta classes can have nested classes of their own. For every class defined
in a meta class, there is a corresponding method specification present in the
method dictionary (class generator method). The class dictionary contains class
specifications for nested classes.

Method Specification A method specification describes methods. It contains
the source code of the method and stores information necessary for class caching
and UI metadata. Whenever a method specification is instantiated, the method
source code is compiled in the target class.

Note that different bytecode must be generated for different target classes:
for example, instance variable reads and writes are compiled to parameterized2

pushRcvr: and popIntoRcvr: bytecodes, where instance variables are referenced
with their index3. In addition, the outer and the enclosing keyword must be
bound to different method literals, depending on the lexical scope of the method.

Example Figure 4.3 shows an example of a class specification for a class Foo.
There is a class specification for Foo and a meta class specification for Foo class.
The enclosing class of Foo is not shown in the UML class diagram part. It is,

2There are separate bytecodes for reading the first or second instance variable etc.
3The first instance variable has index 0, the second index variable has index 1, etc.
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however, shown in the meta model, because the enclosing class specification has
a method specification corresponding to the class specification of Foo.

4.2. Meta Model Instantiation

The class specifications and meta class specifications described in Section 4.1 are
not class objects or meta class objects. These specifications can be instantiated,
producing class objects and meta class objects. This section gives an overview
of how Matriona generates Smalltalk classes based on class specifications. We
distinguish between class definitions and class extensions. In the former case, the
nested class is a newly-generated subclass. In the latter case, an already existing
class is extended (extension methods) or aliased.

4.2.1. Class Definition

In this subsection, we consider the most common case that a brand new class is
defined as a nested class, i.e., the nested class is a class definition. Figure 4.4 illus-
trates the generation and initialization of a class (class specification instantiation).

Whenever a class accessor method is invoked, the method first checks if the
class is already cached. If that is the case, it is returned. Otherwise, the class
generator method is called, returning an empty uninitialized class, i.e., all instance
methods are still missing and only the superclass and the instance and class
variables are set up correctly4. The following list gives an overview of the steps
necessary for initializing a class.

1. Install enclosing instance method. This method returns the enclosing class
(bound as a method literal). Note that the enclosing class cannot be stored in an
instance variable of the nested class, because enclosing should be early bound
and super enclosing should return a class different from self enclosing, in
case the superclass of the nested class has a different enclosing class.

2. Install/compile all instance methods listed in the class specification.
3. Generate the class name. The class name is a concatenation of the enclosing

class’ name and the selector of this class’ accessor method. It is stored as an
instance variable on Class. Note that every class object is an instance of its
meta class, which is a subclass of Class (Figure 4.1).

4. Add a marker method to the meta class to mark it as generated. This makes it
easy to check if a class is an ordinary (legacy) Smalltalk class or was generated
within Matriona.

5. Install specification class method. This method returns the class specification
(bound as a method literal), which is useful for meta programming purposes.
Note that the specification cannot be stored in an instance variable of the
class, because specification should be early bound and self specification
should return a specification different from super specification.

4The class generator method can return any class object, but we consider only class definitions.
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4.2. Meta Model Instantiation

Figure 4.3.: Example: Meta model. There is a class specification for Foo and a meta
class specification for Foo class (same pattern). Foo’s enclosing class has a method
specification (light gray color) defining the class to which the methods are added
(target class), in addition to the corresponding class specification.
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6. Install enclosing class method. This method is identical to the instance method.
7. Install/compile all class methods listed in the meta class specification.
8. Send initialize to the class object.

Note that class initialization is lazy. A class is only generated and initialized
if the corresponding accessor method was called. All references to classes in the
source code call the corresponding accessor method, making sure that the class
is available when it is needed.

In class definitions, class generator methods always return new subclasses
of other classes5; the superclass is referenced by calling its accessor method.
Compared to the default package-loading process in Squeak, this makes class
creation easier. In Squeak, the system has to analyze which classes are subclasses
of each other, in order to create classes in the correct order (superclass has to exist
before subclass is created). In our system, classes are created when their accessor
methods are called, and if these classes depend on other superclasses, these
superclasses are created when the class generator methods call their accessor
methods (if they do not already exist).

Class Accessor Methods and Class Generator Methods For a nested class, two
methods are installed on the meta class object: a class generator method, returning
the class to which methods should be added (usually a newly-created subclass),
and a class accessor method, checking whether the class was already created and
is in the cache or calling the class generator method, otherwise.

The selector for the class accessor method is the name of the class. The selector
for the class generator method is the same selector, but with a dollar sign prefix.

5See Section 4.3 for syntax details.

(class accessor called)

cached class exists
for self?

generate 
class

initialize 
class

put in 
class cache

return 
class

assert not
initialized

install method 
enclosing

install
methods

install
methods

generate
class name

mark as
generated

inst side class side

no

yes

install method
specification

run class
initializer

install method 
enclosing

Figure 4.4.: Nested class definition initialization. Classes are generated lazily and initial-
ized using a class specification and a meta class specification.
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This ensures that the method can only be called by using meta programming
from our system, and avoids accidential name clashes with other methods. For
example, if a class is named Foo, the class accessor method has the selector Foo
and the class generator method has the selector $Foo.

4.2.2. Class Extension

Whenever the class generator method for a nested class returns a class that is
already initialized, we call the nested class a class extension. Class extensions are
useful to extend inherited nested classes without subclassing (see Section 3.4) and
to declare extensions methods (see Section 5.8).

The process of class initialization for class extensions (Figure 4.5) is easier than
the process for class definitions: there are no enclosing methods installed and no
new class name is generated. The already existing specification methods are
modified, such that they return an array of specifications. If a class is extended
multiple times, this array contains all corresponding class specifications. The first
specification in the array is always the specification where the class was defined.

(class accessor called)

cached class exists
for self?

(class
existing)

initialize 
class

put in 
class cache

return 
class

install
methods

install
methods

inst side class side

no

yes

install
specification

run class
initializer

Figure 4.5.: Nested class extension initialization. An already existing and initialized class
is initialized.

4.3. Anonymous Classes and Subclass Generation

In Smalltalk, new classes are created by subclassing an already existing class.
Squeak has a special class, the ClassBuilder, containing all the functionality for
creating the class object, the meta class object, giving the class a name, possibly
migrating the old class and its instances (if an existing class was changed), and
registering it in the globals dictionary.

Matriona reuses the class builder and adds functionality for creating anony-
mous subclasses. Anonymous subclasses [28] do not have a name and certain
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checks are omitted (e.g., if the class name starts with a capital letter). Also, anony-
mous subclasses are not added to the globals dictionary.

Subclass Notation Figure 4.6a shows how subclasses are created in Squeak. The
first statement is a message send to Object which not only creates the subclass
but also adds it to the globals dictionary. The second statement is also executable
code that adds an instance variable to the meta class object. The difference be-
tween class variables and class instance variables is that class variables are shared
among all subclasses, whereas class instance variables have different values for
every class object [31, 30]. For example, if A has a class variable Bar and B is a
subclass of A, then both A and B share one variable Bar.

Object subclass: #NewClass
instanceVariableNames: ’foo bar’
classVariableNames: ’Bar’
poolDictionaries: ”
category: ’Demo-Experiments’.

NewClass class
instanceVariableNames: ’Foo’.

(a) Subclass notation in Squeak

NewClass
< class >
^ Object

subclassWithInstVars: ’foo bar’
classVars: ’Bar’
classInstVars: ’Foo’

(b) Subclass notation with nested classes

Figure 4.6.: Full notation for creating subclasses. Matriona provides abbreviations (con-
venience methods) in case no additional instance variables or class variables should be
defined (e.g., subclass).

Figure 4.6b shows how subclasses are created in Matriona. NewClass is a class
generator method and also the name of the new class. Therefore, it is no longer
necessary to pass a symbol with the name of the new class to the subclass:
method. Note that the <class> pragma is necessary to distinguish between class
generator methods and regular methods, which might accidentially return a class.
Only in the former case, a class specification object is created.

4.4. Implementation of Keywords

In this section, we explain how the keywords enclosing, outer, and scope are
implemented. All message sends to enclosing are forwarded to the enclosing
class. All message sends to outer are forwarded all enclosing classes consecutively,

28



4.4. Implementation of Keywords

whenever a class does not understand the message. All message sends to scope
are first treated as self sends, then as sends to outer.

Implementation of enclosing During compilation, all references to enclosing
are bound to the enclosing class, which is known during class initialization.
Technically, every class has its own Squeak environment which binds enclosing
to the enclosing class. Therefore, it is also possible to evaluate enclosing in the
debugger, for example.

Implementation of outer During compilation, all references to outer are bound
to an instance of LexicalScope. This class is a subclass of ProtoObject, holds ref-
erences to all enclosing classes in the lexical scope, and contains a doesNotUnder-
stand: handler, that forwards messages to enclosing classes. If the enclosing class
does not understand the message, the message is forwarded to the next enclosing
class6. If at some point, a top-level class without an enclosing class is reached, the
handler looks for an entry in the globals dictionary with the message’s selector.

As an example, let us assume that we have classes nested as shown in Fig-
ure 3.1 and that all following message sends to outer happen in some method
of SpaceCleanup class»Level class»Tile. See Figure 4.7a for a visualization of
the lookup.

• outer Tile: lookup in enclosing at: 1 (class SpaceCleanup Level) succeeds.
• outer open: lookup in enclosing at: 1 fails, but lookup in enclosing at: 2

(class SpaceCleanup) succeeds.
• outer SpaceCleanup: lookup in enclosing at: 1 and enclosing at: 2 fails,

but SpaceCleanup is present in the globals dictionary.
• outer Object: same as before. All classes outside of our system are also present

in the globals dictionary.
• outer NoSuchClass: lookup fails and raises a MessageNotUnderstood error.

Implementation of scope References to scope cannot be replaced by a constant
literal during compile time. This is because the lookup involves a lookup in
self7. Looking up methods in the class of the method under compilation is not
sufficient, because that method might be overridden in a subclass8. Therefore,
we have to construct a LexicalScope object at runtime (instead of compile time)
and pass it two objects: the array of all enclosing classes (contained in outer) and
self.

Figure 4.7b shows how the scope lookup works in a slightly modified example.
Just as in the previous example, we assume that all message sends happen in some
method of SpaceCleanup class»Level class»Tile. However, the method is in-

6The lexical scope of a method can only be determined by analyzing the structure of the meta
model. For more details, see Section A.1.

7If scope is used in an instance method, the lookup starts at self class.
8self sends are late bound.
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ProtoObject

+ doesNotUnderstand:
LexicalScope

TileLevelSpaceCleanup

enclosing

<<nested>><<nested>>
+ open + Tile

(globals)

(a) LexicalScope for outer keyword

ProtoObject

+ doesNotUnderstand:
LexicalScope

TileLevelSpaceCleanup

enclosing

target

<<nested>><<nested>>
+ Tile

(globals)

+ open

UberTile

(b) LexicalScope for scope keyword

Figure 4.7.: Example: Method lookup using LexicalScope. Message sends to scope have
an additional target object involved in the lookup, which is the receiver class in
the context where scope appears in the source code. All association arrows actually
reference the class object.
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voked on class UberTile, which is a subclass of class SpaceCleanup class»Level
class»Tile. Therefore, self is bound to UberTile.

• scope new: lookup in self/self class (superclass) succeeds:
method Behavior class»new (creates a new instance of UberTile).

• scope Tile: lookup in self fails, but lookup in enclosing at: 1 (class Space-
Cleanup Level) succeeds.

• The lookup for all other examples listed for outer (previous paragraph) yields
the same result in this example.

Note that the reference to self (target) cannot be established at compile time,
because it is unclear what the polymorphic receiver class is. Therefore, references
to the keyword scope have to be replaced by a message send: LexicalScope for:
self in: outer. This has the side effect that the decompiled source code (and
the code shown in the debugger) looks slightly different from the code written
by the programmer.

4.5. Class Caching

Whenever a nested class is accessed, the class accessor method checks if the
class was already generated. If that is the case, the cached version of the class is
returned. For this reason, every class specification with a unary selector (unpa-
rameterized class) has an instance variable classCache, which contains cached
class objects.

Caching Unparameterized Classes classCache is a dictionary mapping enclos-
ing class objects to nested class objects. Every unparameterized class object can
only have one instantiation. However, consider, for example, the situation in Fig-
ure 3.7b. In this case, A2 caches two instances of B: one for A1 class»B (created
and cached during the super B call) and one for A2 class»B. The former one
contains only the methods defined in A1 class»B. The latter one is a subclass of
the former one and contains all methods defined in A2 class»B. In this example,
the corresponding class specification for A2 class»B has a class cache mapping
A1 to the former one and mapping A2 to the latter one.

Parameterized Classes The system does not cache parameterized classes, as
this could result in an excessive number of classes being kept around. One can
argue, that a nested weak identity key dictionary data structure could solve
this problem: classCache is a WeakIdentityKeyDictionary, whose keys are the
first argument. The values are again WeakIdentityKeyDictionarys, mapping the
second argument to WeakIdentityKeyDictionarys. Eventually, the last argument
is mapped to class objects instead of dictionaries (Figure 4.8).

In this case, class objects are garbage collected once there is no reference to at
least one of the arguments in the system anymore. However, it depends on how
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Figure 4.8.: Class cache for parameterized classes. The cache is a nested dictionary data
structure, with an additional level of nesting per parameter.

MyLibrary class»BaseClass
< class >
" This is the class that serves as
an input for the mixin in this example. "

MyLibrary class»CollectionMixin: base
< class >
" This class is uncached because it is parameterized "

^ base subclass

MyLibrary class»MyCollection
< class >
" This is the cached mixin application. "

^ self CollectionMixin: self BaseClass

Figure 4.9.: Example: Cached mixin application. The mixin application is uncached,
because the mixin is a parameterized class. However, the aliased mixin application
MyCollection is cached, because it is an unparameterized class.
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exactly parameterized classes are used. If parameterized classes are used heav-
ily, for example with SmallIntegers as parameters (or other globally reachable
objects), no class would ever be garbage collected, because SmallIntegers are
represented as tagged objects in Squeak [11, 63]. If parameterized classes are used
as mixins, this is arguably less of a problem, because the number of base classes
to which a mixin is applied is usually not excessively large. However, note, that
mixin applications can easily be cached by aliasing them as an unparameterized
class (Figure 4.9). We argue that mixins will be used in such a way most of the
time, because writing the mixin application explicitly is more verbose and hinders
readability; in addition, the programmer might want to add additional methods
to the mixin application, in which case the mixin application must be subclassed
or aliased as described, anyway.

4.6. Class Updates

Squeak is a live programming environment with immediate feedback. When the
programmers changes a class, these changes should also immediately affect all
instances of the class in the system, i.e., existing instances must be migrated to
the new class [26]. In that sense, Squeak and many other Smalltalk implementa-
tions [68] are different from other programming languages with an “edit/com-
pile/run cycle” [60]: the programmer has the feeling that there is no difference
between compile time and runtime.

For this reason, Matriona has to ensure that changes to the source code are im-
mediately applied to all living objects in the image. It is important to understand,
that changes to parameterized class specifications can affect multiple classes
(model instantiations) at runtime. Therefore, every class specification stores a
weak collection of all its instantiations (instantiations). This collection is in fact
a WeakIdentityKeyDictionary and also used to cache arguments for parameter-
ized classes (see Section 4.6.4). When a class specification is changed, all of its
instantiations can be looked up easily and adapted one by one. Note that this
dictionary is different from the class cache, as it holds on to instantiations weakly.

4.6.1. Changing Instance/Class Methods

Whenever an instance method is added, removed, or changed, the system retrieves
the collection of all instantiations, and performs the corresponding change on
the class object. This does not require creating a new class object, but merely
changing the method dictionary using Squeak’s meta object protocol [35, 44].

Changing class methods is equivalent to changing instance methods, with the
only difference being that the meta class object is changed instead of the class
object.
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4.6.2. Changing Instance/Class Variables

This kind of class change is more difficult to handle than method changes. When-
ever an instance/class instance variable is added or removed, some methods
might have to be recompiled, because instance variables are referenced with
indices in the bytecode (see also Section 4.1).

-foo
X

-bar
Y

-baz
-qux

Z

Figure 4.10.: Example: Instance variables indexing. Every instance variable has a zero-
based index. The index of inherited instance variables is preserved.

Instance Variables Indexing In Figure 4.10, class X has instance variable foo,
class Y has instance variables foo and bar, and class Z has instance variables
foo, bar, baz, and qux. Instance variables are indexed according to the superclass
hierarchy. Therefore, foo has index 0, bar has index 1, baz has index 2, and qux
has index 3. These indices are used in the bytecode instead of string literals or
symbols. Therefore, when instance variables are changed in X, all classes (methods
referencing these instance variables) X, Y, and Z have to be recompiled. If instance
variables in Z are changed, only Z has to be recompiled.

Definition of Instance Variables What is more interesting is how instance
variables are defined in Matriona: they are part of the class generator method
(Figure 4.6b). Therefore, the system has to execute that method a second time
whenever it is changed. The method returns a new class object which must be
initialized again, i.e., all methods are recompiled. Squeak has the same behavior:
whenever an instance variable is changed, methods in the current class and all
subclasses are recompiled. Section 4.6.4 gives an overview of the steps necessary
for class migration.

4.6.3. Changing Target Class

The target class is the class that is returned by the class generator method. It is
usually a new subclass. The superclass of a nested class can be changed by chang-
ing the receiver of the subclass message in the class generator method. Whenever
the target class is changed, the class generator method must be executed a second
time and the old class must be migrated to the new one. From a class migration
point of view, it does not matter whether an instance variable or the target class
was changed. The same class migration process follows.

34



4.6. Class Updates

4.6.4. Class Migration

Whenever an instance variable or the target class in a class generator method is
changed, the changed class generator method must be executed a second time and
the old class object must be migrated to the new class object. In this subsection,
we describe some of the pitfalls in this process.

key
(enclosing)

value
(array)

...

...

...

owner
class arg 1 arg 2 arg 3

arg 1 arg 2 arg 3

arg 1 arg 2 arg 3

owner
class

owner
class

Figure 4.11.: Example: Argument cache. The cache is a dictionary mapping parameterized
instantiations to an array of arguments that was used to generate the respective class.

Class Argument Cache Class generator methods for unparameterized classes
can just be invoked without any parameters. However, in order to update pa-
rameterized classes, the system has to cache the arguments provided to the class
generator method when the class was generated. Therefore, every class specifi-
cation maintains an argument cache (instantiations), mapping instantiations
(classes) to an array of arguments and the class that owns the nested class9. This
argument cache is a WeakIdentityKeyDictionary and different from the dictio-
nary data structure shown in Figure 4.8. That class cache would map arguments
to instantiations. Whenever there is no reference to an instantiation in the image
anymore, the array of arguments can be garbage collected, because nobody can
access the class anymore; therefore, this class does not have to be updated.

Class Migration Invoking the class generator method a second time usually
generates a new class10. Therefore, all references to the old class have to be
replaced with references to the new class using the becomeForward: method.
Also, all instances of the old class have to be migrated to the new class. This is no
different from what Squeak does when an instance variable is added or removed,
and not described in any more detail in this work. We encourage the reader to
consult the Smalltalk Blue Book [35] for more information.

At this point, we have to distinguish between class definitions and class ex-
tensions. We always migrate classes for a class definition. However, not all class

9The owner class is not necessarily the enclosing class. The enclosing class is early bound, whereas
the owner is the class to which the class accessor selector was sent.

10There are exceptions: for example, executing the method for an alias a second time does not
generate a new class.
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extensions are migrated. Consider, for example, the case that the programmer
created an alias for String and changed that alias to point to SmallInteger. In
this case, we should not migrate all instances of String to SmallInteger. The
rationale behind this example is that aliases and class extensions can be applied
at multiple points throughout the program. Classes should never be migrated
when such a class is changed, because other (unchanged) points in the program
will be affected.

MyClass
< class >
^ Object

(a) Class extension

MyClass
< class >
^ Object subclass

(b) Class definition

MyClass
< class >
^ super MyClass

(c) Class extension
(extending inherited nested class)

MyClass
< class >
^ super MyClass subclass

(d) Class definition
(subclassing inherited nested class)

Figure 4.12.: Example: Class migration. In (b) and (d), a class is defined. Therefore, these
classes will be migrated. In (a), a class is aliased. This class will not be migrated. In
(c), a class defined in the same object (self) where it is extended, so this class will be
migrated. We assume that the superclass in (c) actually defines the class and does not
extend a class.

There is one exception to this rule. Whenever an inherited nested class is
extended in a subclass, the class should be migrated, because every subclass
has its own nested class that is different from the superclass’ nested class, even
though the nested class is defined in the superclass and extended in the subclass.
Therefore, class extensions are migrated, only if the original class definition took
place in the same object as the class extension in question.

Figure 4.12 shows multiple examples. Figure 4.12c is the interesting case. An
inherited nested class is extended. We assume, that the enclosing superclass
defined MyClass. In that case, MyClass is defined in the same class as it is extended:
it is defined in super MyClass and extended in self MyClass (same receiver in
both cases).

Clearing Class Extension Caches Whenever a class is migrated, all class exten-
sions have to be reapplied. During class migration, becomeForward: is used to
replace all references to the old class with references to the new class, including
class caches. After class migration, all class caches for class extensions for the new
class are cleared. When the migrated class is later accessed through an alias or a
class extension, all extension methods are reapplied.
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Changing Class Extensions Whenever the class generator method for a class
extension is changed, Matriona first undoes all changes to affected classes, i.e., it
removes all methods that were added or replaced. Currently, it does not restore
replaced methods. Colliding extension methods are a known problem in Smalltalk.
Other techniques have been proposed, but are out of scope for this thesis (see
Section 7.4). After changes to affected classes have been undone, Matriona clears
the class cache. Therefore, all class extensions are reapplied when the class is
accessed again through the accessor method for the class extension. In case the
class extension is an extension of an inherited nested class, the migration process
takes place as previously described.

Overview Figure 4.13 gives a high-level overview of the entire class migration
process.

4.7. Integration in Squeak

In this section, we describe how Matriona is integrated in Squeak. We also point
out where more work is necessary to integrate Matriona better in Squeak. These
tasks are mostly engineering tasks. In Section 7 we discuss conceptual future
work.

4.7.1. Module Repository

Smalltalk

Collections

Array

Set

+

+

+

Morphic+

SpaceCleanup+

Figure 4.14.: Example: Top-level class Small-
talk. All classes should be nested within
Smalltalk.

At the moment, there is a separate
module repository for Matriona. This is a
singleton class with a collection all top-
level class specifications and a collec-
tion of instantiated top-level class spec-
ifications. This is useful for develop-
ment purposes, because basic Squeak
classes can be migrated to our system
without the risk of damaging the base
system. References to classes are first
looked up in the module repository,
then in the Smalltalk globals dictio-
nary.

Eventually, both the Smalltalk glob-
als dictionary and the module reposi-
tory should be replaced by a single top-
level class Smalltalk (Figure 4.14). All
modules are then nested classes of that
top-level class and the method lookup
always breaks down to looking up se-
lectors in enclosing classes. Smalltalk
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loop
[for all instantiations]

cls := invoke class generator
method

becomeForward: + migrate
instances

remove cls from other caches

loop
[for all instantiations]

undo class extension

extension of inherited class?

is class definition?

(class generator method changed)

yes (definition) no (extension)

yes

no

clear class cache

Figure 4.13.: High-level overview of the class migration process. Classes and instances
are only migrated if the nested class is a class definition or a class extension of an
inherited nested class.
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is the only global variable and looked up differently. Global variables that are
currently stored in the globals dictionary can either be class instance variables of
the top-level Smalltalk class or be stored in a special dictionary which is stored
as a class instance variable on Smalltalk.

Future work should investigate how Smalltalk classes can be migrated to Ma-
triona, especially, what the nested class structure should look like. For example,
in Figure 4.14, there are two modules Morphic and Collections. In Collections,
there are nested classes for arrays and sets. It is unclear whether this is the best
way of structuring Squeak base classes in a hierarchical way.

4.7.2. IDE Support

Matriona comes with a proof-of-concept implementation of a class browser. The
existing system browser cannot be used, because it cannot handle class nesting.
Our class browser is written in Vivide [85], a framework for dataflow-driven
tool development, and shown in Figure 4.15a. It supports creating and deleting
methods and nested classes, but basic refactoring functionality and functionality
such as browsing senders and receivers is still missing.

Matriona is also integrated with the Squeak workspace and the test runner
(Figure 4.15b). Unit tests can be written and will show up in the test runner, as
long as test classes are defined in a nested class called Tests within a top-level
class. Later versions might traverse the entire nested classes graph to look for
subclasses of TestCase, but this basic functionality already allows us to test parts
of our system with code written in the system itself.

4.7.3. Debugger

The Squeak debugger can be used to step through the source code. Parts of the
source code can be selected and being evaluated. This also works with keywords
that were introduced with Matriona, such as outer and enclosing, because they
are bound in the Squeak environment of the class.

What is still an issue is that the debugger shows a transformed source code
that is slightly different from what the programmer wrote. For example, class
references are prepended with the scope keyword. In addition, whenever the
scope keyword is used, code must be inserted that generates a new instance of
LexicalScope, because scope cannot be bound at compile time (see Section 4.4).
When stepping through the source code, the programmer will see additional
stack frames for the class generator method and the class accessor method. The
class accessor method is merely generated code, which is why it might be hidden
in future versions of Matriona.

Whenever the source code is changed in the debugger, the corresponding
method specification is changed, causing all instantiations to be updated.
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(a) Class Browser for Nested Classes

(b) Integration in Squeak

Figure 4.15.: Screenshots: Integration of Matriona in Squeak. Matriona comes with a
separate class browser supporting class nesting and is integrated in the test runner
and the workspace.
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4.8. Source Code Management

Squeak uses Monticello as a source code packaging tool. Monticello can import
and export code on a per-package basis. It can supports file system directories,
HTTP URLs, and FTP URLs as repositories (i.e., the place where the code is loaded
from and stored at). Whenever the programmer wants to get a new version of
the source code, two options are available: packages can be loaded which will
overwrite all local changes, and packages can be merged which will preserve local
changes and only update new methods and classes. In case of merge conflicts, the
programmer has to decide which version to load (old method or new method).

SqueakSource11 used to be a remote repository for Monticello projects (groups
of packages). It is now deprecated and SmalltalkHub12 is one possible replace-
ment.

Matriona is not integrated with Monticello, because Monticello does currently
not support class nesting. Many changes would be necessary in the import/export
code, the user interface (e.g., merge window), and the backend repository; for
example, SqueakSource allows browsing the code on its website, which does no
longer work with class nesting.

Source Code Format Matriona comes with its own import/export functionality.
The exported format is similar to the FileTree13 format and only suppprts a file
system-based repository as of now. There is a directory for every class. Inside
that directory, there are instance and class directories storing instance methods
and class methods, respectively. For every nested class, the corresponding class
directory contains a source code file for the class generator method and a directory
for the nested class. For every method, there is a file containing its source code
with the selector of the method as file name. Colons in selectors are replaced with
dots and there is a special notation for binary selectors which often consist of
symbols that cannot be part of a file name (e.g., slash).

Figure 4.16 illustrates what the exported format looks like. The top-level mod-
ule is SpaceCleanup. It does not have any methods on the instance side, but a
regular method open on class side, as well as a nested class Game. That nested
class has instance methods initialize and startGameWithPlayers:.

Source Code Repository At the moment, we use git and GitHub to store mod-
ules written in our system, but any other external source code management sys-
tem, such as Subversion or Mercurial, can be used. Matriona does only support
loading and saving, but not merging. It does also not store metadata associated
with methods or classes, e.g., the author of a method or when it was changed.
Instead, we rely on the underlying source code management system.

11http://www.squeaksource.com/
12http://www.smalltalkhub.com/
13https://github.com/dalehenrich/filetree
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(root directory)
SpaceCleanup.st
SpaceCleanup

instance
class

Game.st
Game

instance
initialize.st
startGameWithPlayers..st

class
open.st

Figure 4.16.: Example: Source code export. A module and nested classes are represented
by a source code file (class generator method) and a directory containing members.
Methods are represented by source code files.

The following list gives an overview of how to load new changes into the
system.

1. Export local changes (if any).
2. Get the latest source code from the remote repository (e.g., git pull).
3. Resolve merge conflicts on the file system, if any.
4. Import the entire module14.

The following list gives an overview of how local changes can be stored in a
repository.

1. Export the entire module.
2. Get the latest source code from the remote repository (e.g., git pull).
3. Resolve merge conflicts on the file system, if any.
4. Send local working copy to the remote repository (e.g., git commit and git

push).

14This step only recompiles changed methods.
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In this chapter, we show how Matriona can be used in applications and describe
how it can solve the problems presented in Section 2.

5.1. Avoiding Duplicate Class Names

SpaceCleanup
+ open

Game+

Level+

Resources+

Bucket+

...

Sokoban
+ open

Game+

Level+

Resources+

Cheese+

...

Figure 5.1.: Example: Avoiding duplicate class
names. Every nested class has a unique fully
qualified name.

In this example, class nesting is
used to avoid class name clashes
and to give every class a unique
fully qualified name. Consider,
that we want to load two com-
puter games in a single Squeak im-
age. The first game is a bomber-
man game (SpaceCleanup), pro-
viding classes Game, Level, Re-
sources among others. The second
game is a Sokoban game, and has
three classes with the same name.
Without Matriona, this would be a
problem: as soon as another class
with the same name is installed,
the old one is overwritten with the
new one.

With Matriona, two classes with
the same name can coexist in the

same image, as long as they are nested within different classes (Figure 5.1).
Note that, for example, SpaceCleanup Game and Sokoban Game are different

classes. Whenever a class inside SpaceCleanup references Game using the source
code statement scope Game or Game (equivalent statements), the method lookup
recurses in the enclosing class, until Game is found in the SpaceCleanup class.

5.2. Module Versioning and Dependency Management

In this example, class nested is used to keep multiple different versions of the
same library in one image. This is necessary if two applications require different
versions of the same library. In the best case, the API of a library should not
change within one major version, such that a newer library version should work
with an application that was developed with an older library version. However,
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sometimes, application developers have to work around known bugs or rely on
implementation-specific classes which are not designed to be used by library users
and subject to change. In that case, application code can break when suddenly a
different version of the library is used.

5.2.1. Representing Module Versions

MathLibrary

v1+

v1+

Geometry+

Calculus+

v2+
...

...

+ polygonArea:

Figure 5.2.: Example: Module versioning. A ver-
sion is represented by a nested class.

Figure 5.2 shows how nested
classes can be used for module ver-
sioning. In this example, we are de-
veloping a library for mathemati-
cal operations. The top-level class
contains nested classes for every
major version. Every major ver-
sion can again have nested classes
for minor versioning. In fact, this
scheme can be used to have any
kind of versioning system, as long
as it is based on numbers.

Two versions of MathLibrary are
installed in this example: version
1.1 and version 1.2. These versions
can be referenced by writing Math-
Library v1 v1 and MathLibrary
v1 v2. Note that even though all
versions define classes with the
same name, no class clashes occur.

If a class in MathLibrary references another class in MathLibrary, the method
lookup will look for classes in the same version of MathLibrary.

New Versions In case the programmer wants to add a new version, Matriona
will in future releases provide a mechanism to copy a base version and give it
a new name. The copied base version can then be modified. Already released
versions should not be changed in the future. Instead, a new version should be
released.

For development purposes, it is useful to have a special version called dev.
Programmers can collaboratively work on this version. Once the version should
be released, the programmer can make a copy of the entire class and give it a new
name: the new version number.

Matriona does at the moment not support delta updates. A new version is
always an entire copy of an application, even if just a few methods changed. We
might consider delta updates in future releases of Matriona, such that a new
version is essentially the previous version and a set of changed methods/classes.
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Of course, this requires having the entire application history installed in the
image.

5.2.2. Aliasing Module Versions

Whenever an application requires a class from a library in a certain version, the
application can either write down the fully qualified name of the class or create an
alias. For example, the fully qualified name of the class Calculus in MathLibrary
version 1.2 is MathLibrary v1 v2 Calculus. However, it is very likely that an
application requires more than just one class from a library. In this case, we
suggest to define an alias, because it keeps the required version number at a
single point in the code (making it easy to change the version) and results in less
verbose code.

MyApplication»MathLibrary
^ Repository MathLibrary v1 v2

MyApplication»rectArea: origin extent: extent
^ MathLibrary Geometry polygonArea: {

origin x @ origin y.
(origin x + extent x) @ y.
(origin x + extent x) @ (origin y + extent y).
origin x @ (origin y + extent y) }

Figure 5.3.: Example: Class alias. MathLibrary is an alias pointing to a certain version.

Figure 5.3 shows how class aliases can be used to specify module versions at a
single point in the code. The programmers defines a method MathLibrary return-
ing the module in the required version. In MyApplication»rectArea:extent:, the
reference to MathLibrary will be replaced with scope MathLibrary, which will
call the aliased method. Note that in MyApplication»MathLibrary, we have to
reference the library with Repository MathLibrary, forcing the lookup to start at
the root of our system. Otherwise, the method MathLibrary would call itself.

Aliases should be defined as deep (nested) as possible to avoid poluting the
namespace. Aliases to other modules should be defined in the module (top-level
class) to get a quick overview of all dependencies. For example, if a class MyAp-
plication A B C requires MathLibrary v1 v2 Calculus, then an alias to MathLi-
brary v1 v2 should be defined in MyApplication and an alias to MathLibrary
Calculus could be defined in MyApplication A B C using the previously defined
alias.

Class aliases, as described in this paragraph, are similar to import statements
in other programming languages, and are a form of internal dependency man-
agement.

Helper Methods In Figure 5.2, the top-level class and major version should be
a subclass of the class Versioning, a class provided by our system. This class
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contains convenience methods making it easier to work with version containers.
The following list gives an overview of the helper methods Versioning provides.

• Versioning»myLatest: returns the latest version contained as a nested class in
the receiver. For example, MathLibrary myLatest returns MathLibrary v1.

• Versioning»latest: returns the lastest version in the receiver recursively. For
example, MathLibrary latest returns MathLibrary v1 v2.

• Versioning»atLeast:: returns the latest version recursively and asserts that
its version number is greater than the parameter. For example, MathLibrary
atLeast: ’1.1’ returns MathLibrary v1 v2, and MathLibrary atLeast: ’1.3’
throws an error.

In order to get the latest installed version with major version 1, the program-
mer could write MathLibrary v1 latest. Future versions of Matriona might au-
tomatically download and install missing versions, instead of throwing an error
message.

5.2.3. Squeak Versioning

With Matriona, it is theoretically possible to run multiple versions of Squeak in
one image. The basic idea is that every Squeak version is nested in a different
version class. The screenshot in Figure 5.4 shows two versions of the system
browser running in the same image. The old system browser lacks many features,
such as syntax highlighting or buttons for senders/implementors.

When we tried running bigger system libraries, such as Morphic, in different
versions in one image, we encountered the following difficulties.

• Many system libraries are not written in a modular way. For example, they use
global state. Whenever global state is stored on other classes or in the glob-
als dictionary (e.g. Smalltalk globals at: #World), the library circumvents
Matriona.

• Some classes should not exist multiple times in one image. For example, Array
and String are classes that the virtual machine knows about1. Whenever an
argument is passed to a primitive, the virtual machine expects that it is an
instance of a class it knows about. Similarly, whenever a primitive returns a
value, it is an instance of the version the image knows about.

Future work might investigate how multiple Squeak versions can be run in a
single image.

1SmalltalkImage»specialObjectsArray calls primitive 129 and returns an array of 56 unique
special objects that the VM knows about.
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Figure 5.4.: Example: Squeak system browser in different versions. The browser in the
front is a modern Squeak 4.5 system browser. The browser in the back is a system
browser from Squeak 2.3.

5.2.4. External Configuration

Parameterized classes can not only be used to build mixins, but also externally
configuarable modules. The basic idea is taken from Newspeak, where all mod-
ule dependencies are encapsulated in a platform object. This platform object is
installed along with the application source code and contains all libraries that the
application depends on in the correct version [18]. This has the advantage that
there is no need for a global namespace and all references to external classes are
resolved using the platform object, effectively making import statements obsolete.
A configurable module does not need to know anything about concrete imple-
mentations of external libraries, as long as the implementations provided in the
platform implement the expected interfaces.

In our system, methods inside parameterized classes can reference arguments
provided to the class accessor method. The idea is that, instead of referencing
classes in the global namespace, the programmer references these arguments. The
user of the module can then decide which exact implementation he wants to use.

Example Figure 5.5 shows part of the implementation of a simple drawing
application. PaintbrushWithMatrix:IO: is a parameterized top-level class which
takes as arguments a matrix implementation and a file IO library. The matrix
implementation is used for storing the pixels inside the application. In the sim-
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plest case, this could be the class Matrix from the Squeak standard library. It
could, however, also be a class which stores pixels in a compressed form (e.g.,
using run-length encoding), but has at:, at:put:, rows, and columns as public
API methods. ReaderWriter must be a class or object that supports reading and
writing files on a pixel-by-pixel basis. Depending on which IO class the user
of the library provides to PaintbrushWithMatrix:IO:, the application might for
example generate JPEG files or PNG files. References to Matrix and ReaderWriter
in the source code are implicit receiver sends to scope (see Section 3.2.7) and the
lookup yields the corresponding class parameters (see Section 3.3).

It is important to understand that the implementation of PaintbrushWithMa-
trix:IO: is entirely decoupled from the pixel data structure representation and
the import/export functionality. It is up to the user of PaintbrushWithMatrix:IO:
to configure the class as needed.

External configuration as shown in this example is similar to a constructor that
accepts class objects as parameters and constructs an instance of the class with the
class objects stored in instance variables. The difference to this approach is that,
in our system, also class methods are bound to the passed arguments, because
a new class object is constructed instead of an instance of a class. Furthermore,
our system allows creating new nested classes with the argument as a superclass
(mixins).

5.3. Hierarchical Decomposition

One of the benefits of hierarchical decomposition is better readability and better
understandability. Proper class nesting makes it easier for readers of the source
code to understand which classes belong together and to find the class containing
a certain functionality.

As an example, we took two simple computer games written in Squeak: Space-
Cleanup2, a bomberman clone, and Breakout3 (Figure 5.6).

Figure 5.7 shows the original source code of SpaceCleanup and the source
code after we introduced class nesting. The original source code already made
use of packages, which can be compared to a single level of class nesting. The
refactored source code is mostly unchanged, except for class name changes. It is
interesting to see that the class structure is already much more readable by just
getting rid of all namespace prefixes. We can not only get rid of class prefixes,
but also suffixes. For example, Builder, Item, and State suffixes are omitted. It
is now also possible to group classes together that belong together logically. For
example, both level builders are nested within SpaceCleanup Level. Similarly, all
items are nested in SpaceCleanup Level Item (which is also the superclass of all
items), which makes sense because a level consists of tiles and every tile can have
items. An item cannot be used without a tile and a tile is never used outside a

2https://github.com/matthias-springer/space-cleanup
3https://github.com/fniephaus/BroBreakout
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PaintbrushWithMatrix:IO:

Bitmap+

+ load:
+ initialize
+ save:
+ setPixel:color:

Matrix
+ new
+ at:
+ at:put:
+ columns
+ rows

ReaderWriter
+ for:
+ readPixelsFrom:do:
+ writePixel:color:

(a) Overview of the PaintbrushWithMatrix:IO: module and dependent interfaces

PaintbrushWithMatrix: Matrix IO: ReaderWriter
< class >
^ Object subclass

(PaintbrushWithMatrix: Matrix IO: ReaderWriter) class»Bitmap
< class >
^ Object subclassWithInstVars: ’pixels’

(PaintbrushWithMatrix: Matrix IO: ReaderWriter)
class»Bitmap»initialize

pixels := Matrix new.

(PaintbrushWithMatrix: Matrix IO: ReaderWriter) class»Bitmap»
setPixel: aPoint color: aColor

pixels at: aPoint put: aColor.

(PaintbrushWithMatrix: Matrix IO: ReaderWriter) class»Bitmap class»
load: aFile

| instance |
instance := self new.
ReaderWriter

readPixelsFrom: aFile
do: [ :point :color | instance setPixel: point color: color ].

^ instance

(PaintbrushWithMatrix: Matrix IO: ReaderWriter) class»
Bitmap»save: aFile

| writer |
writer := ReaderWriter BitmapWriter for: aFile.
1 to: pixels columns do: [ :x |

1 to: pixels rows do: [ :y |
writer writePixel: x@y color: (pixels at: x@y) ] ].

writer close.

(b) Source code for configurable application

Figure 5.5.: Example: External configuration. Parameterized classes can be instantiated
using arguments (dependencies). All dependencies can be accessed with message
sends to scope or implicit receiver sends.
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(a) SpaceCleanup (b) Breakout

Figure 5.6.: Screenshots of SpaceCleanup and Breakout. These games are implemented
in Squeak and serve as an example for hierarchical decomposition.

level. Note that there exist two classes with the name Random, but they are nested
in different classes.

Figure 5.8 shows the original source code of Breakout, as well as a refactored
version. We did not change the source code, except for class names. All block-
related classes are stored as nested classes in the class Breakout Block, which is
also used to represent regular blocks in the game, that can be destroyed using
Racket. Breakout Block Boundary represents a special block used for the unde-
stroyable border of the game. All power ups are represented as nested classes in
the abstract superclass Breakout Powerup. The structure of the refactored version
is much clearer, because the original version did not take advantage of packages,
probably due to the relatively small number of classes.

5.4. Mixin Modularity with Parameterized Classes

Parameterized classes can be used to build mixins. Mixins are not a special feature
of this system: they are an application of Matriona and come for free by just
having class nesting as described in the previous sections; they are an immediate
consequence of parameterized classes. A mixin is a function that takes a class as
input and outputs a subclass with additional behavior [16, 7, 78], i.e., it is a class
transformator (also called abstract subclass [20]). Previous work has shown that
mixins are beneficial to improve code reusability and understandability, especially
in configurable applications [80, 24, 79].

A mixin can be implemented by writing a class generator method with one
parameter which is the input class. The method creates a subclass of that input
class and returns it. Associated with that parameterized class generator method
is a set of instance-side methods and a set of class-side methods. These are the
methods that will be added when applying the mixin.

Recursive Mixin Application A mixin can make sure another mixin is applied
upon its application. This is done by creating a subclass of a mixin application in
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SpaceCleanup

EventDispatcher
Level

Builder
GridPattern
Random

Tile
Item

Bucket
Destructible
Floor
Monster

Strategy
MoveToPlayer
Random

Moving
PickUp
Player
Portal
Slime
Wall
Water

State
Building
Configuring
GameOver
GameWon
Paused
Running

Resources
UI

CheatWindow
ConfigurationWindow
Controls
GameInformation

(a) Refactored project structure

SpaceCleanup-Core

ScuEventDispatcher
ScuGame
ScuGameBuildState
ScuGameConfigState
ScuGameOverState
ScuGamePausedState
ScuGameRunningState
ScuGameState
ScuGameWonState
ScuMonsterStrategy
ScuMonsterRandomStrategy
ScuMonsterToPlayerStrategy

SpaceCleanup-Items

ScuBucket
ScuDestructibleItem
ScuFloor
ScuItem
ScuMonster
ScuMovingItem
ScuPickUpItem
ScuPlayer
ScuPortal
ScuSlime
ScuWall
ScuWater

SpaceCleanup-Level

ScuLevel
ScuLevelBuilder
ScuGridPatternLevelBuilder
ScuRandomLevelBuilder
ScuTile

SpaceCleanup-Resources

ScuResourceManager

SpaceCleanup-UI

ScuCheatWindow
ScuConfigurationWindow
ScuControls
ScuGameInformation

(b) Original project structure

Figure 5.7.: Example: Hierarchical decomposition. SpaceCleanup game implementation
with/without hierarchical decomposition.
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Breakout
Level

Ball
Block

Boundary
Explosion
Racket

Builder
Powerup

Accelerate
Ball
Decelerate
Enlarge
Shrink

World
View

Level
Menu
Welcome

LevelStatistics
Item

MenuLabel

(a) Refactored project structure

BroBreakout
BroBall
BroBlock
BroBoundary
BroBreakout
BroExplosion
BroLevelBuilder
BroLevelStatistics
BroLevelStatisticsItem
BroLevelView
BroLevelWorld
BroMenuLabel
BroMenuView
BroPowerup
BroPowerupAccelerate
BroPowerupBall
BroPowerupDecelerate
BroPowerupEnlarge
BroPowerupShrink
BroRacket
BroView
BroWelcomeView

(b) Original project structure

Figure 5.8.: Example: Hierarchical decomposition. Breakout game implementation with-
/without hierarchical decomposition.

the class generator method. Consequently, the system first creates a subclass of
the base class, adds the methods of the inner mixin, then creates a subclass of the
resulting class, and finally adds the methods of the outer mixin.

Example Figure 5.9 shows an example of parameterized classes and how they
can be used to build mixins.

Two class generator methods A M1: and A M2: are defined, which take as
input a base class and output a subclass with additional behavior. A M1M2 is
an application of both both mixins. A M1M2’s superclass is some A M2:, whose
superclass is some A M1:, whose superclass is Object. Note that A M1: and A M2:
are not specific classes: we use this notation as a name for some application of A
class»M1: and A class»M2:, respectively. Therefore, even if two classes have the
same name, they are not necessarily the same class if they names contain a colon.

Note that evaluating A M1: Object multiple times returns different class objects,
since parameterized classes are not cached. However, A M1M2 is cached, because
it is a unary method. Therefore, calling A M1M2 multiple times always returns the
same class object.
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A

+ M1:
+ bar

M1: base
  ^ base subclass

+ foo

+ M2:
+ bar

+ M1M2

M2: base
  ^ base subclass

bar
  ^ super bar + 1

M1M2
  ^ self M2:
    (self M1: Object)

Figure 5.9.: Implementation of mixins. A mixin is a parameterized class, whose class
generator method takes a base class and returns a subclass of the base class.

The notation used in A class»M1M2 can be a bit confusing at first. That method
first applies A M1: to Object, and then A M2:; however, in the source code, A
M2: appears before A M1:. For readability reasons, and to support more features
like pre-include hooks and post-include hooks, we present the Class Generator
Pattern in Section 5.5.

5.5. Unparameterized Class Generator Pattern

The syntax used for mixin application has a few shortcomings. For example,
the statements self A: (self B: Object)) means that mixin B: is applied to
Object, and then mixin A: is applied to that result. The problem is that the source
code statement does not reflect the order of mixin applications: the statement
has to be interpreted from right to left. Another problem is that A: and B: are
parameterized classes and parameterized classes cannot be referenced using an
implicit scope receiver. Therefore, the programmer always has to write scope
explicitly.

Both problems can be solved by wrapping the mixin in an unparameterized
class and adding a helper method to Class. We assume that the name of the
parameterized nested class is always Mixin:. Then, the helper method « can be
defined as shown in Figure 5.10.

Class»<< aMixin
^ aMixin Mixin: self

Figure 5.10.: Helper method on Class for unparameterized mixin wrapper classes
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Example Figure 5.11 shows two mixins and a base class: CollectionLogic is
a mixin that adds the methods allSatisfy: and anySatisfy:, and Collection-
Filter is a mixin that adds the methods detect: and select:. All of these four
methods can be implemented based on do:, which iterates through all elements of
a collection. Both mixins can be applied to classes providing at least that method.

CollectionLogic

Mixin:+

+ allSatisfy:
+ anySatisfy:

CollectionFilter

Mixin:+

+ detect:
+ select:

CollectionFilter class
>> Mixin:

CollectionLogic class
>> Mixin:

MyCollection

Object

(a) Class diagram showing mixin and result of mixin application

CollectionLogic class»Mixin: base
< class >
^ base subclass

(CollectionLogic class»Mixin: base)»allSatisfy: aBlock
self do: [ :each |

(aBlock value: each) ifFalse: [ ^ false ] ].
^ true

(CollectionLogic class»Mixin: base)»anySatisfy: aBlock
self do: [ :each |

(aBlock value: each) ifTrue: [ ^ true ] ].
^ false

" (implementation of CollectionLogic omitted) "

MyCollection»do: aBlock
" Some implementation "

FullCollection
< class >
^ MyCollection << CollectionFilter << CollectionLogic

(b) Definition and application of mixins

Figure 5.11.: Example: Unparameterized class generator pattern. CollectionLogic and
CollectionFilter are unparameterized class generators, i.e. mixins that can be applied
using the « method.

CollectionLogic and CollectionFilter are wrappers around mixins, making
it possible to access them like any unparameterized class. When a mixin is applied
using the « syntax, the receiver is used as an argument for the Mixin: method.
Therefore, the name of the actual mixin must always be Mixin:, as long as,
« is implemented as shown in Figure 5.10. Note that « inverses the order of
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receiver and argument, which is why the statement in FullCollection can be read
from left to right: first CollectionFilter and then CollectionLogic is applied to
MyCollection.

Pre-Include Hooks and Post-Include Hooks The unparameterized class gener-
ator pattern allows the definition of pre-include hooks and post-include hooks. A
pre-include hook is a method defined on the mixin wrapper, which is executed
before the mixin was applied, with the base class as an argument. Similarly, a
post-include hook is executed after the mixin was applied, with the resulting
class as an argument.

Note that the programmer can already write arbitrary code at the point where
the mixin is applied. However, pre-include hooks and post-include hooks are
provided by the mixin itself, and not by the user of a mixin.

Class»<< aMixin
| result |
aMixin before: self.
result := aMixin Mixin: self.
aMixin after: result.
^ result

(a) Mixin wrapper application

+before:()
+after:()
+Mixin:()

Mixin

(b) Mixin wrapper base class

Figure 5.12.: Implementation of pre-include hooks and post-include hooks for mixins

Figure 5.12 shows how these hooks are implemented. Mixins with a pre-include
hook or a post-include hook should be a subclass of the abstract class Mixin. This
class provides empty before: and after: methods which should be overridden
in subclasses and contain the pre-include hook and/or post-include hook.

In the previous paragraph, the unparameterized class generator pattern was
presented as a tool to increase code readability. With regards to include hooks,
this pattern is more: it is necessary to have some kind of wrapping. Include hooks
should not be defined on the mixin function itself, because all methods defined
on the mixin function are added during mixin application. This is usually not
desirable.

5.6. Mixins as Composable Pieces of Behavior

Mixins, as described in the last two sections, are class transformators. Given an
existing class, they output a new subclass with additional or changed behavior. In
Figure 5.11, we started with MyCollection, a class containing only the do: method,
and added additional behavior to it, resulting in the class FullCollection.

Here is another point of view on the same situation: combine behavior from
CollectionFilter and CollectionLogic, add an implementation of do:, and call
it FullCollection (Figure 5.13).
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FullCollection
< class >
^ (Object

<< CollectionFilter
<< CollectionLogic) subclass

FullCollection»do: aBlock
" Some implementation "

CollectionFilter class
>> Mixin:

CollectionLogic class
>> Mixin:

FullCollection

Object

Figure 5.13.: Example: Mixins as composable pieces of behavior. Mixins are first applied
to the superclass and abstract methods can be overridden in a subclass of the result.

NewClass
< class >
^ Object

mixin: Mixin1
mixin: Mixin2
mixin: Mixin3
subclassWithInstVars: ’foo

bar’
classVars: ’Bar’
classInstVars: ’Foo’

(a) Mixin and subclass template

FullCollection
< class >
^ Object

mixin: CollectionFilter
mixin: CollectionLogic
subclassWithInstVars: ”

(b) Mixin and subclass example

Figure 5.14.: Example: Simplified notation for using subclassing and mixins. This notation
is equivalent to applying all mixins to the superclass and then generating a subclass
(see Figure 5.13).

For readability reasons, our implementation provides a simplified notation that
combines this kind of mixin application and subclassing (Figure 5.14). This new
notation first applies mixins, and creates a subclass of the result afterwards. Note
that the notation reflects the order of subclassing: at first, Mixin1 is applied, then
Mixin2, then Mixin3, and finally a subclass is created with the additional methods
defined on NewClass.

The idea of mixins used as composable units of behavior is similar to traits [75].
However, there are some minor differences.

• Mixins are not flat, but create an inheritance hierarchy. E.g., FullCollection
superclass returns an application of CollectionLogic class»Mixin: and not
Object.

• No explicit conflict resolution is required. Traits raise an error whenever a
method is added multiple times and the conflict is not resolved manually in the
resulting class. The last applied mixin, on the other hand, overwrites predefined
methods with the same name, and allows calling the original implementation
using super.
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5.7. Traits

Traits are similar to mixins and allow behavior to be shared among multiple
classes. They can be implemented with class nesting and parameterized classes.
The basic idea is to have a parameterized class for every trait, adding trait methods
to the target class, but without subclassing it first. Every trait has a pre-include
hook and post-include hook. The pre-include hook creates a set of all selectors for
the target class. The post-include hook checks if a method was overwritten when
it was applied by comparing the set of selectors with the selectors provided by the
inner parameterized class. If that is the case, the trait replaces that method with
a method that throws an error message, telling the programmer that the conflict
has to be resolved. The method provided by the trait is aliased with a selector
containing the trait name. In a resolved method (which overwrites the method
that throws the conflict error), the programmer can call aliased trait methods.

The idea of traits is not yet fully fledged out at the moment. This section
is meant to give a rough idea of what else could be done with Matriona (see
Section A.2 for details). The described approach still has a few shortcomings.

• Conflicts errors are thrown when the resolved method is called and not during
trait application.

• Adding new methods to Traits that were already applied can break these
applications. Every trait is essentially a class extension and adding a new
method will add the method to all trait applications, whether or not the method
already exists (no conflict resolution).

5.8. Extension Methods

There are cases, in which the functionality of an already existing class in a differ-
ent module must be extended or changed. For example, this is the case when a
bug in another library must be fixed. The programmer typically writes a method
that replaces the existing one with the bug. Sometimes, extension methods are
also used add additional behavior. For example, the Morphic package adds the
convenience method asStringMorph to String. Sometimes it is sufficient to create
a subclass of the class in question, and add the changed behavior only to the
subclass. However, there are cases where the application code is not in control of
instance creation.

An extension method can be added in Matriona by creating a nested class
whose class generator method returns an already existing class instead of a new
subclass (class extension).

Consider, for example, that we want to add a method asString to the top-level
class FullCollection in Figure 5.14. Figure 5.15 shows how to define a method
returning the string concatenation of all elements in the collection.

Note that it is not possible to add extension methods to all parameterized
classes or class specifications. Extension methods can only be added to concrete
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MyApplication class»FullCollection
< class >
^ Repository FullCollection

MyApplication class»FullCollection»asString
^ String streamContents: [ :stream |

self do: [ :each | stream nextPutAll: each asString ] ]

Figure 5.15.: Example: Extension methods using nested classes. FullCollection is an
alias to an already existing class which is extended when the alias’ class accessor
method is invoked for the first time.

classes (i.e., class objects). For example, it is not possible, to add an extension
method to all classes that are generated by PaintbrushWithMatrix:IO: in Fig-
ure 5.5; only a concrete class object (instantiation) can be extended.

Extension methods are dangerous because changes to existing methods could
break other code relying on the old behavior. Numerous alternatives have been
proposed, and we provide a brief overview of some of them in Section 7.4.
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In this chapter, we describe how the problems listed in Section 2 were solved in
other programming languages, and compare their approaches with Matriona.

6.1. Duplicate Class Names

In this section, we describe how other programming languages address the prob-
lem of duplicate class names. For example, this problem can occur if multiple
libraries provide classes with the same name. When referencing these classes, it
is then no longer obvious which class was meant.

6.1.1. Namespaces/Packages and Class Nesting

Many programming languages have a concept of namespaces or packages. Classes
are typically organized in a package, which is a set of classes. Classes within a
package can usually reference each other directly. However, references to classes
in other packages typically require imports, aliases, or a fully qualified name.
Some programming languages also support class nesting, where the enclosing
class creates a namespace for all inner/nested classes.

VisualWorks Namespaces VisualWorks is a commerical Smalltalk implemen-
tation by Cincom1 and supports namespaces [21]. A namespace is a container
for other namespaces, classes, and shared variables. Since a namespace can be
defined within another namespace, VisualWorks allows for a form of hierarchical
decomposition. All namespace members (e.g., classes) in the same namespace
can be referenced by just writing down their names. All namespace members in
other namespaces can be referenced by writing down their fully qualified name,
which is the concatenation of all nested namespace names and the name of the
class with dots as separators. For example, the fully qualified name of a class C1
in namespace B in namespace A is A.B.C1. Relatives name are also supported: for
example, A.B.C1 can be referenced as B.C1 within A.

A namespace can import members from other namespaces by specifying a list
of all imports when the namespace is defined [40]. Wildcard imports are possible,
importing all members of a namespace. Imported members can be referenced
within a namespace as if they were part of that namespace. A namespace member
can also be defined as private; such a member cannot be imported, but always has
to be referenced using its fully qualified name or a relative name.

1http://www.cincomsmalltalk.com/main/products/visualworks/
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Namespaces are instances of the class NameSpace, which is a subclass of Collec-
tion. NameSpace defines a few helper methods to allow for meta programming,
such as listing all classes or defining new namespaces or classes within a names-
pace.

In Matriona, a namespace is an uninstantiable nested class. Instead of imports,
Matriona supports aliases. Wildcard aliases/imports are not supported in Matri-
ona. Nested classes can be accessed using message sends instead of extending
the Smalltalk syntax with a namespace notation.

Java Packages and Nested Classes The Java programming language has a con-
cept of packages. A package is set of classes, interfaces, and packages, and cor-
responds to a directory on the file system. Classes and interfaces in the same
package can be referenced directly using their name. Classes and interfaces in
other packages can be referenced using their fully qualified name, which is gen-
erated exactly as in VisualWorks. They can also be imported explicitly, making it
possible to reference them just using their name; wildcard imports are possible.

Classes and interfaces can be defined as package-public or package-private.
Only package-public members can be imported or referenced within members
outside of the current package.

Java supports the concept of nested classes: a class can either be a top-level
class or a class that is nested within another member. There are four different
kinds of nested classes [9].

• Static member class: a class that belongs to another class, i.e., it is a static member
of another class. It can be accessed like a static variable of the enclosing class.
For example, if B is nested in A, it can be referenced with A.B. Messages sent
from within the nested class are first looked up in the nested class and its su-
perclass hierarchy, then on the class side of the enclosing class (static methods),
and then in the enclosing class’ enclosing class (if it is a nested class).

• Non-static member class: a class that belongs to an instance of another class, i.e.,
it is a non-static member of another class. It is similar to a static member class,
but the method lookup happens on the instance side of the enclosing class. At
first glance, it seems that every instance of a class has its own non-static member
class; however, all of these classes must inherit from the same class (which can
be resolved at compile time). Effectively, all non-static member classes are the
same class, with the only exception that they are bound to different enclosing
objects; every class has a field holding a reference to the enclosing instance [32].

• Anonymous class: a class without a name. In older Java versions, it was fre-
quently used as a substitute for missing block closures [72]. Lambda expres-
sions are available since Java 8, making anonymous classes obsolete in many
use cases. Note that since classes are not first-class objects in Java, it is difficult
to pass anonymous classes around (without using the java.lang.Class) and
to use them in a different context without using meta programming.
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• Local class: a class that can be defined at any position where a local variable
could be defined. It is the least frequently used kind of classes.

Static member classes are similar to packages. By just looking at source code
that references a static member class, it is not obvious whether the class is stati-
cally nested or contained in a package.

Java imposes certain restrictions on member classes. For example, non-static
member classes are not allowed to have static members which are not final [37].
Furthermore, a subclass cannot override a member class definition [39]; it can
just define its own member class. The difference is that overriding implies late
binding, which is not the case in Java.

Jx In Jx, Nystrom et al. changed the Java language in such a way, that subclasses
can enhance member classes [62]: the new member class overrides the original one
and is always a subclass and a subtype of the member class in the superclass. This
is equivalent to subclassing inherited nested classes in Matriona. In Jx, there is
no way to completely override a nested class or to extend it without subclassing.
The subclass relationship is established implicitly, without using the extends
keyword.

References to classes are late bound in a way that, depending on the context, a
reference to a nested class can be a reference to the original nested class (in the
enclosing superclass) or a reference to the enhanced nested class (in the enclosing
subclass).

Jx also allows changing the superclass of a member class in a subclass of the
enclosing class, a form of mixin modularity.

Ruby Modules Ruby has the concept of classes and modules. Modules are
classes which are not instantiable. They can be included in classes and be used as
mixins. Modules and classes can be nested in each other, defining a namespace [4].
Classes and modules can be accessed using their fully qualified name, which is
the concatenation of their names with two colons as separator. For example, if
class B is nested in class A, B’s fully qualified named is A::B. Classes and modules
can also be accessed using relative names. For example, when accessing A::B,
Ruby first looks for A in the current class/module. If there is no such member, it
looks in the enclosing class/module.

In Ruby, a class can have methods, variables, and constants. An inner class or
module is just a constant defined on the enclosing class. Constants are copied or
shared during subclassing. Subclasses can replace inner classes with their own
implementation. A nested class/module is always a class-side member of their
enclosing class/module (non-static member class in Java).

In Ruby, classes and modules can be extended after they have been defined. In
case of an accidential class/module name clash, the two (or more) classes/mod-
ules are effectively merged. In case of colliding methods, the method that was
last seen (e.g., read from the file system) overwrites all previous definitions. This
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process is often used deliberately in Ruby, in order to change the behavior of a
library or an application, e.g., to fix a known bug (monkey patching) [3].

Python Modules In Python, every source code file is a module. Modules have
to be imported, before they can be used within another module. Members defined
in a module can be referenced by concatenating the module name and the name
of the member (e.g., class or function) inside the module with a dot as a separator,
if the module is imported. It is also possible to import single members from a
module with their own name or an alias. These members can be accessed without
writing down the module name.

In Python, every directory with an __init__.py source code file is a package.
Packages can contain other packages and modules. Packages can be imported
just like modules. The fully qualified name of a module is the concatenation of
all package names and the module name, with dots as separators.

Modules in other packages can be imported by writing their fully qualified
name or using a path relative to the current module [86].

Python supports inner classes, but only for readability and understandability
reasons, and their usage is not wide-spread. Inner classes are class-side members
of the enclosing class. In fact, for every inner class, Python creates an attribute on
the enclosing class object with the inner class name as name and the inner class
object as value. Since all nested class attributes are copied during subclassing, a
subclass shares the same inner classes as the superclass. Redefining an inner class
on a subclass simply replaces it. Inner classes do not affect the class lookup: for
example, when two inner classes nested on the same level want to reference each
other, both have to write their full path (i.e., sequence of attribute reads).

Whenever a top-level class is defined and there is already a class with that
name in the same module, the new class replaces the existing one.

BETA BETA is a statically-typed “programming language in the Simula tra-
dition” [51, 45]. BETA does not distinguish between methods and classes, but
provides a single abstraction mechanism (unification), called the pattern. Every
pattern has an object descriptor, which consists of a list of attribute declarations,
optionally a do-part, optionally an enter-part, and optionally an exit-part.

Patterns can be instantiated, similarly to classes in other programming lan-
guages. Instantiated patterns (objects) can be executed, i.e., the do-part is exe-
cuted. The enter-part serves as a declaration of parameters for the do-part and
the exit-part can be used to declare output parameters.

The idea behind unification of classes and methods is that classes can be
instantiated, resulting in objects, and methods can be instantiated, resulting in
activation records (stack frames).

BETA supports pattern inheritance. In contrast to other programming lan-
guages, methods cannot be overwritten in subclasses, but extended. BETA always
invokes the base method, which can make an inner call in order to invoke the def-
inition of the subpattern. The rationale behind this design decision is the Liskov
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substitution principle [47]: if the base type is in control of invoking extended be-
havior, it is easier to ensure that program invariants hold true, even if an instance
of a subpattern is used instead of the base pattern. Goldberg et al. argue that both
super and inner can be useful in a programming language [36].

In BETA, patterns can be nested. The type of attribute can be either a primitive
type (e.g. integer) or another pattern, similarly to class nesting in Newspeak
and Matriona. Pattern nesting can be used to group patterns that belong together
logically [48] and to define interfaces: an interface is a pattern with only virtual
attributes. Another pattern can implement that interface by providing a nested
pattern which is a subpattern of the interface pattern and extends the interface’s
nested patterns with concrete implementations [50].

Nested patterns can be virtual. A virtual pattern can be extended in subpat-
terns of the enclosing pattern, similarly to subclassing inherited nested classes in
Matriona. In contrast to Matriona, an extended virtual pattern must always be a
subtype of the base pattern and cannot be redefined (overwritten) [49].

6.1.2. Squeak Environments

A Squeak environment is a mapping of symbols to global objects. Squeak envi-
ronments were introduced with Squeak 4.5 [84] and make it possible to have mul-
tiple globals dictionaries, effectively establishing namespaces. In fact, Smalltalk
globals is an environment. Every class has an environment instance variable
determining the environment it belongs to.

Environments establish an association between global identifiers and objects
at compile time. For example, if the programmer writes Object new in a method,
Squeak looks up #Object in the environment of the class in which the method is
compiled and adds a reference to the result of the lookup in the environment as
a method literal. Environments are integrated into the Squeak code base; e.g., the
debugger looks up symbols in the corresponding environment when evaluating
a code snippet. However, environments lack IDE support at the moment. For
example, new environments cannot be created in the system browser as of now.

Name Policies An environment can be imported into another environment. This
process copies over all name bindings from the source environment to the target
environment. Subsequent changes to the source environment are not reflected
in the target environment. In order to solve name conflicts during namespace
imports, class names can be changed during import using name policies.

• AllNamePolicy: Class names are not changed during import.
• ExplicitNamePolicy: The programmer can specify an alias for every class using

a dictionary.
• AddPrefixNamePolicy: A static prefix is added to every class name during

import.
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• RemovePrefixNamePolicy: A static prefix is removed from every class during
import.

Example Consider, for example, that we want to have two applications Space-
Cleanup and Breakout installed in a Squeak image, and both applications provide
duplicate class names (e.g. Game), as described in Figure 5.1. The programmer has
to define separate environments for SpaceCleanup and Breakout, containing only
classes from the respective applications, and importing the system environment,
such that system classes like String or Morph are available. The methods in each
application can reference Game directly, because the corresponding environment
does not contain bindings for the other application.

When the programmer wants to use classes from either one of the two appli-
cations, the environment has to be imported into the environment of the classes
that need to reference the application classes. If both applications are needed, a
name policy must be specified to resolve conflicts. References to classes in the
application must then be replaced with the resolved class name (e.g., with a
prefix).

Squeak Environments in Matriona Environments are used in Matriona to im-
plement the method specification and the keywords enclosing and outer. Ev-
ery class has its own environment and these three identifiers are bound to the
corresponding objects. Matriona does, however, not use environments for class
lookup for the following reasons.

• Classes are accessed using message sends. Having early-bound classes breaks
this notion conceptually, because message sends are always late bound.

• Parameterized classes cannot be early bound (bound at compile time), because
instantiations of a parameterized class do not exist until the corresponding
class generator method was invoked with the corresponding arguments (which
are only known at runtime).

• Lazy class initialization is not possible with environments, making source code
imports slower, because all referenced class would be created immediately
during the import procedure.

• Early-bound classes make it more difficult to handle source code changes.
Consider, for example, that a method references a nested class contained in the
second-level enclosing class, and a class with the same name is added to the
first-level enclosing class. In this case, Matriona would have to recompile the
method (in order to change the binding) and must, therefore, have a cache of
all methods that reference a class.

6.1.3. Newspeak Modules

Newspeak is a programming language that is inspired by Self and Smalltalk. In
Newspeak, classes can be nested, establishing a hierarchical namespace. That
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namespace is, however, not global [18, 13]. All references to external libraries
or applications are message sends to a special platform object [17], which is
constructed by the application developer, and deserialized and imported when the
application is installed. Access to external libraries and also the system libraries
is only possible through platform. Basic language classes like String, as well
as Squeak classes that have not been transformed to Newspeak classes, are an
exception: they can be accessed using platform blackMarket [57].

Method Lookup In Newspeak, all names are late bound. Nested classes can
be accessed by sending a message to the enclosing object. The receiver of a
message is implicit, i.e., the programmer does not have to write self message,
but just message. The lookup mechanism first looks for a corresponding method
or nested class in self, then in the lexical scope of the method, and finally in
the superclass hierarchy [17]. Instance variables can only be accessed through
automatically-generated accessor methods.

Matriona supports implicit receivers only for unary messages and looks up
methods using comb semantics: the lookup starts in self, continues in the super-
class hierarchy, and finally traverses the lexical scope of the method. Non-unary
selectors cannot have implicit receivers as this would change the Smalltalk syntax.
For example, message is a valid Smalltalk statement, but message: #foo is not. It
is, however, a valid Newspeak statement. In Matriona, we encourage program-
mers to make use of implicit receivers only when a class is referenced. In fact, all
message sends with implicit receivers are replaced with message sends to scope
by the compiler.

Nested Classes In Newspeak, nested classes can be defined on the class side
and on the instance side. Since all names in Newspeak are late bound, all classes
are in fact two mixins: one mixin for the instance side, and one mixin for the
class side. Every class is essentially represented by a superclass statement and
two mixins that will be applied to the evaluation of the superclass statement (and
its meta class) [14].

6.2. Dependency Management

This section gives an overview of how programmers can use external dependen-
cies in other programming languages. Dependency management describes not
only the process of how dependencies are installed and organized, but also how
they can be included and referenced in an application.

We first describe three methods for referencing external dependencies. Af-
terwards, we give an overview of how dependencies are installed, stored, and
organized in other programming languages.
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6.2.1. Explicit Dependencies

This is the simplest form of dependency management. A dependency is ref-
erenced by writing down its fully qualified name in the source code. Con-
sider, for example, that a Java programmer wants to write a Paintbrush ap-
plication, similar to the example shown in Figure 5.5. This application requires
a library for reading and writing picture/image files. An external PNG read-
er/writer library can be referenced by writing down its fully qualified name,
e.g., ar.com.hjg.pngj.PngReader2. In this section, it is not important how we can
ensure that the class PngReader is loaded and available (see Section 6.2.4). What is
important is that the programmer explicitly referenced the dependency. Therefore,
the application is coupled to that dependency. Changing the dependency requires
changing the source code of the application. Note that referencing dependencies
explicitly is not possible in programming languages without a global namespace
(e.g., Newspeak).

6.2.2. Dependency Injection

An alternative to explicit dependencies is dependency injection. Instead of refer-
encing dependencies explicitly using their fully qualified name (or using an alias),
the programmer writes down a list of all dependencies at one central position: the
injector knows about all dependencies and ensures that clients have access to de-
pendencies when needed. Whenever a dependency is required in the source code,
the programmer uses an implementation-independent interface instead of the
concrete implementation (if the language is statically typed) and adds a source
code annotation. The source code annotation ensures that the system injects the
dependency [70]. This makes dependency management easier, because depen-
dencies are listed at one central position, whereas they were scattered across the
application in the previous example.

Google Guice Guice3 is a framework for dependency management in Java. The
programmer has to create and define a so-called module4, which binds interfaces
to implementations [88]. Consider, for example, that there is an interface Im-
ageReader that is implemented by PngReader. Figure 6.1 shows how the program-
mer defines the module binding ImageReader to PngReader and uses the reader
in Paintbrush. Note that Paintbrush does not reference PngReader directly, but
just an abstract interface. The Paintbrush class is decoupled from the concrete
reader class. The PNG reader class could easily be replaced with a reader class
reading a different file format by just modifying the module, as long as the new
reader class also implements the interface ImageReader.

2PNGJ is a Java library for reading and writing PNG images.
3https://github.com/google/guice
4Modules in Guice are not to be confused with modules in Matriona.
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import ar.com.hjg.pngj.PngReader;
import com.google.inject.AbstractModule;
import org.imageformats.ImageReader;

public class PaintbrushModule extends AbstractModule {
@Override
public void configure() {

bind(ImageReader.class).to(PngReader.class);
}

}

import org.imageformats.ImageReader;

public class Paintbrush {
@Inject
private ImageReader reader;

public void loadImage(String fileName) {
/* ... */
Bitmap bitmap = reader.readFile(fileName);
/* ... */

}
}

Figure 6.1.: Example: Dependency injection with Google Guice. A module binds inter-
faces to implementations and dependencies in the application code are annotated with
@Inject.

Note that the example in this paragraph shows only the very basic functionality
of Google Guice. More advanced features are available, for example, ensuring
that an injected implementation is a singleton instance. Dependency injection is
also used heavily in Java test cases, to ensure that a test uses a mock implementa-
tion [90]. Another popular dependency injection framework for Java is the Spring
Framework5.

Seuss Seuss is a framework for dependency injection in Pharo/Smalltalk [76].
Whenever a dependency is required in a class, an instance variable and a corre-
sponding setter method should be added. The setter method must have an inject
pragma, telling the framework that a dependency must be injected upon instance
creation. For example, if a class requires an image reader class as a dependency,
the programmer could add an instance variable setter method with the <inject:
#ImageReader> pragma. The framework allows binding the symbol #ImageReader
to a concrete object at a different position in the code.

The authors of Seuss argue, that Seuss can help getting rid of static methods,
which are often used as accessor methods for globally visible services, where the
corresponding class acts as a namespace. Seuss can also make test code sim-

5http://projects.spring.io/spring-framework/
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pler, because implicit dependencies are resolved and delegated to the injector.
Furthermore, the abstract factory pattern becomes obsolete.

6.2.3. External Configuration in Newspeak

In Newspeak, methods cannot access other top-level classes, because there is no
global namespace. At the same time, there is no form of dependency injection
that would provide dependencies where needed. Instead, Newspeak has the
notion of a platform, a dictionary-like data structure containing references to all
dependencies. During module/class instantiation, all dependencies should be
acquired from platform, which is passed as an argument in the constructor, and
stored in slots (instance variables), so that they can be used within modules [17].
This is necessary because, in contrast to Matriona, class bodies (methods etc.) in
Newspeak do not have access to class parameters [14].

A platform object should be bundled together with an application. It is created
by the developer of an application and then serialized to disk, together with
the source code of the application. Whenever a user installs the application, all
dependencies are installed along with the application code. Since there is no
global namespace, the platform acts as a sandbox. Different applications and
platforms cannot interfere with each other.

Parameterized classes in Newspeak can be used for external configuration of
classes in a way that is similar to Matriona. Whenever a class is paramterized
and stores its arguments in slots, methods in the current class and nested classes
can access these slots, because Newspeak automatically creates accessor methods
for all slots. When scope in Matriona does the method lookup, it first searches
for methods in the class, and then checks if there is a parameter for the class
with that name. Afterwards, it continues the lookup in the enclosing class. An im-
plicit receiver lookup in Newspeak immediately finds the corresponding accessor
method.

6.2.4. Dependency Installation

In this section, we briefly describe dependency/package management systems
for different programming languages.

Metacello Metacello6 is a package management system for Smalltalk (multiple
dialects). It can be used to load applications and libraries into a system and
supports various backends, such as Monticello or github. Every Metacello project
is represented by a configuration class and consists of a set of versions, modelled
as instance methods of the configuration. Every version is a set of packages in a
certain Monticello version. The configuration class also contains URLs to remote
repositories and other dependent projects [69].

6https://github.com/dalehenrich/metacello-work
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Whenever a project is loaded, Metacello retrieves all packages from the (remote)
repositories specified in the configuration class in the requested versions. Already
existing classes are replaced during filein. It is not possible to install multiple
versions of a Metacello project side by side.

Maven A Java class loader loads compiled Java classes into a running virtual
machine. It can be used to load classes dynamically at runtime by specifying their
names. Maven is a software project management and comprehension tool. It stores
dependencies in a repository on the file system and loads them using a Java class
loader. Maven projects have a pom.xml configuration file that contains a listing of
all dependencies required by the project. When the project is run, Maven ensures
that all dependencies are available in the repository or downloads them from a
remote server, otherwise. It then compiles the project and runs it.

Maven is a widely-used tool, not only for open-source projects, but also for
enterprise applications. In 2014, the Maven central repository hosted more than
17,000 projects and more than 115,000 versions in total, amounting to about 265

GB of data [54].
Every Maven dependency declared in pom.xml should have a version. A version

can be an exact version number (e.g., [1.1]) or a version range. For example, if all
versions smaller or equal to 1.0 are acceptable, the programmer can write (,1.0].
Another example is [1.0,2.0), meaning that all versions between 1.0 (including)
and 2.0 (excluding) are acceptable [92]. The way Maven specifies versions is
similar to Matriona. However, Maven cannot load more than one version of a
library at a time. There would be no way to reference a certain version of a
library in the Java code, because all the programmer does is writing down the
fully qualified name of a class contained in a dependency. The version number is
usually not part of the fully qualified class name. In Matriona, it is.

Maven dependencies are transitive. If A requires B, and B requires C, then
adding A as a dependency will automatically add B and C as dependencies. The
programmer does not have to specify these dependencies explicitly.

RubyGems RubyGems is a package manager for Ruby. Libraries and applica-
tions are contained in gems. Gems can be installed using the command line tool
gem and are hosted at a central repository7. The programmer has to require (im-
port) the package rubygems in his application. Afterwards, installed RubyGems
can be imported by adding corresponding require statements. Specific versions
of a gem can be imported by adding a gem statement in front of the require state-
ment. For example, gem "extlib", ">= 1.0.8", followed by require "extlib"
imports the library extlib in a version that is guranteed to be greater or equal to
1.0.8 [71].

Bundler8 is a dependency manager for RubyGems. The programmer can add a
Gemfile to the root directory of an application. All dependencies are automatically

7http://rubygems.org
8http://bundler.io/
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downloaded and installed when the programmer executes the command line
statement bundle install.

6.3. Readability and Understandability

In object-oriented, class-based programming languages, source code is typically
structured on multiple levels. Classes are used to group common behavior for a
set of objects. Inside a class, methods are used to divide source code into smaller,
more managable pieces. In this section, we give an overview of how classes can
be structured in other programming languages, in order to increase readability
and understandability of source code.

6.3.1. Smalltalk Packages

In Smalltalk, packages are used as deployment units. Usually, the programmer
can already tell by the name of a package, what the responsibilities of a certain
package are. For example, in Figure 5.7b, all item classes are contained in the
package SpaceCleanup-Items. Similarly, all UI-related classes are contained in
SpaceCleanup-UI. Packages make it easier to find a certain class whose name is
unknown to the programmer. They also make it easier to understand in what
context a certain class is used.

6.3.2. Hierarchical Decomposition

As described in Section 6.1.1, many programming languages such as Java, Python,
Ruby, or Newspeak, have a concept of packages, namespaces, and/or nested
classes. These concepts allow for a form of hierarchical decomposition. Smalltalk
packages allow the programmer to put classes in a certain package, according
to their responsibilites. The mentioned concepts make it possible to structure
classes on a more accurate level. Packages, namespaces, and nested classes act as
a form of information hiding, because implementation details are hidden from
the programmer. Only when examining the next nested level, the programmer is
confronted with another level of details. In Section 2.3, we give an overview of
the benefits of hierarchical decomposition.

6.4. Code Reuse

In this section, we give an overview of how other programming languages pro-
mote code reuse. Composition and inheritance are the most basic form of code
reuse in class-based programming languages. We focus on concepts that are
similar to the ones used in Matriona.
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6.4.1. Multiple Inheritance

In programming languages with multiple inheritance, a class can be a subclass of
more than just one superclass. Examples of programming languages supporting
multiple inheritance are C++, Eiffel, or Python. Multiple inheritance is contro-
versial because of the diamond problem: imagine that a class inherits from two
classes and both classes provide the same method. Which implementation should
be used in the subclass? In C++, this problem is solved by specifying explicitly,
which implementation to use. In Python, the order of superclasses matters and
the superclass hierarchy is flattened to a single inheritance graph (C3 lineariza-
tion [77]).

6.4.2. Mixins

Mixins are an alternative to multiple inheritance. A class can inherit from a single
class, but multiple mixins can be mixed into the inheritance hierarchy. Mixins
can also be seen as abstract subclasses, class transformators, or class functions.
Mixins can be implemented in programming languages using one of the following
mechanisms.

Explicit Programming Language Support The programming language pro-
vides an explicit mixin construct (as part of the syntax), effectively making mixins
part of the language definition.

In Ruby, modules can be used as mixins. When a module is included in a
class (using the include statement), the module is added to the inheritance chain
as a superclass. Consequently, when a mixed-in method calls super, the lookup
searches for methods in the list of previously mixed-in modules, and then in the
superclass. However, the superclass method skips mixed-in modules.

MixedJava is an extension of the Java programming language, introducing a
mixin notation (extension of the Java syntax) [33]. Another example is McJava [43].

Class Nesting and Virtual Superclasses Whenever a programming language
supports instance-side class nesting (non-static member classes) and virtual su-
perclasses, the programmers gets mixins for free: create a container class C with
an instance-side nested class C.I. The superclass of C.I is provided to instances
of C as a constructor argument. C.I can then act as a mixin or class-to-class
transformator by writing (new C(superclass)).I.

Java supports class nesting but does not support mixins, because superclasses
are not virtual, i.e., the superclass must be known at compile time. Newspeak
supports mixins through instance-side nested classes and virtual superclasses. In
Matriona, classes can currently not be defined as instance-side members. Earlier
versions Matriona supported this feature (see Section 7.1) and mixins could be
implemented as described. At the moment, mixins can only be written using
parameterized classes.
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Parameterized Classes In Matriona, mixins can be implemented by creating a
parameterized class, whose argument will be used as the superclass the mixin is
applied to. In a similar way, C++ templates can be used to implement mixins: the
parameter of a template is used as a superclass during template instantiation [81,
78].

Java generics cannot be used for mixins, because generic parameters cannot
be used as superclasses. In fact, all generic class instantiations are represented
by the same class. MixGen is an extension of the Java programming language,
where generic parameters are first-class objects [1]. MixGen does erase types upon
compilation and supports mixins: a generic parameter can be the superclass of a
generic class.

Linearization of Multiple Inheritance As described in Section 6.4.1, method
resolution in programming languages with multiple inheritance can be ambigu-
ous. Some programming languages have complicated rules for determining which
method to use. Others require the programmer to resolve conflicts manually. An-
other solution to this problem is linearization: the superclass graph is flattened
to a single inheritance graph (e.g., C3 linearization [77]).

Multiple inheritance together with linearization can be used to implement mix-
ins. In CLOS, mixins can be represented as classes [82]. A mixin application is
a new class whose superclasses are the mixin and the base class. Inside meth-
ods, call-next-method can be used to make super calls. For example, a mixin
defined with (defclass Mixin () ()) can be mixed into the base class (def-
class Base () ()) with (defclass Mixin-application (Mixin Base) ()). The
method lookup will first look for methods in the mixins and then in the base
class.

Python is another programming language that uses linearization of multiple
inheritance. Mixins can be implemented in a similar way.

Meta Programming Mixins can be implemented using meta programming. For
example, in Smalltalk, a customized doesNotUnderstand: handler could delete
all failed message sends to a list of mixins stored as an instance variable. This
approach provides only “interface inheritance instead of class inheritance” [55].

6.4.3. Traits

Traits are a form of code reuse and similar to Mixins. A trait is a “composable
unit of behavior” [75] (collection of methods). One or multiple traits can be
applied when a class is defined. Traits do usually not change the superclass
hierarchy. Instead, all trait methods are copied into the target class, i.e. traits
can be “compiled away” [58]. Conflicts (duplicate methods) have to be resolved
manually by providing a method in the target class for every conflicting method.
Such a method could call the implementation of either one of the traits.

72



6.4. Code Reuse

Traits are available in both Pharo and Squeak. In Pharo, traits were used to
modularize parts of the system kernel and the collections library. Similar adaptions
have been proposed for Squeak [74]. Featherweight-Trait Java is an extension of
the Java programming language supporting traits [58]. Traits in Pharo and Squeak
support removing methods from a trait upon composition, as well as renaming
methods in a trait.

Schaerli et al. proposed traits as an alternative to mixins. They argue that
conflict resolution is easier with Traits and that class hierarchies built by mixins
are fragile [73].

Traits can be implemented in Matriona on top of mixins. Mixins evolve out
of class nesting in a natural way, which is, however, not the case for traits. For
example, meta programming is necessary to call a trait method within a resolved
method. Futhermore, meta programming is necessary to detect whether method
conflicts arised during trait composition. Traits were implemented by adding a
post-include hook to mixins, which is where Matriona checks if methods are
conflicting.

Traitor9 is a library that adds support for Traits to Ruby. It is implemented by
adding a method missing handler and a collection of traits to every class. Whenever
a message is not understood, the handler first checks for method conflicts and
then goes through all traits applied to the class. Traits could be implemented in
Matriona in a similar way by adding a doesNotUnderstand: handler. The benefit
of this approach is that the superclass hierarchy is not changed. One disadvantage
is that the programmer cannot define another doesNotUnderstand:, since it would
overwrite the handler defined by the library.

6.4.4. Java Generics

Java generics allow classes and interfaces to be parameterized by one or multiple
classes and interfaces for type checking reasons [12, 19]. They are often used
together with collections [66]. Generic parameters are defined as part of the class
or interface definition. When a class or interface is used, the programmer can
pass classes and interfaces as arguments.

Figure 6.2 shows how Java generics are used in practice. T is the generic param-
eter of the class Array. The compiler ensures that only arguments with the correct
type T can be passed to set() and knows that get() can only return objects of
type T.

One shortcoming of Java generics is type erasure: generic type information is
only known at compile time, but not at runtime. In contrast to C++ templates,
there is only one Array class, regardless of how often the class is parameterized
with different arguments [46]. Therefore, Java actually stores a reference to an
array of type Object[]. It is difficult to initialize storage to an array of type T. In
fact, the statement new T[size] does not compile. What the programmer could
write instead is an unchecked type cast [61]: (T[]) new Object[size].

9https://github.com/txus/traitor
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class Array<T> {
T[] storage;

public List(int size) {
storage = /* ??? */;

}

T get(int index) {
return storage[index];

}

void set(int index, T value) {
storage[index] = value;

}
}

Array<String> arr = new Array<String>(100);

Figure 6.2.: Example: Generic array implementation using Java generics. Due to type
erasure, it is not obvious, how to allocate an array whose base type is a generic
parameter.

In Matriona, a new class is created every time a parameterized accessor method
is executed. Furthermore, arguments passed to the accessor method are available
at runtime using message sends to scope.

6.4.5. C++ Templates

C++ templates allow classes to be parameterized with generic types. In contrast
to Java generics, C++ generates a copy of the template, whenever it is used with
a concrete type [89]. Consequently, every instantiation of a C++ templated class
generates a new class, whereas all instantiations of a Java generic class are the
same class (type erasure).

C++ templates are similar to parameterized classes in Matriona in a sense that
a new class is generated whenever a template/parameterized class is instantiated.
However, new classes in Matriona can be generated at runtime, whereas C++
templates are generated statically at compile time, as if they were a preprocessor
transformation.
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In this section, we give an overview of possible areas of future work. We also
point out deficiencies of Matriona that we want to address in future versions.

7.1. Classes as Instance-side Members

Java and Newspeak support nested classes as instance-side members (non-static
member classes). Earlier versions Matriona included support for instance-side
nested classes, but this caused difficulties in the implementation.

• Method lookup: Classes can now be enclosed in instances instead of classes. We
are not sure whether a message send to enclosing, outer, or scope should also
lookup methods on the class side whenever a message was not understood
on the instance side. It would certainly be good style to nest classes that do
not need access to instance-specific state as class-side members. These classes
should then be accessible within an instance using an implicit receiver send or
the scope keyword.

• outer/enclosing cannot be early bound: These keywords might have to start their
lookup in an instance. Therefore, they cannot be bound as literals, which are
stored in methods and, therefore, shared among all instances.

• Possible memory issues: In contrast to Java, Matriona would generate a new
class every time an instance-side member class is accessed. This could lead to
memory and performance issues.

In addition to these difficulties, we are currently unclear about what the exact
benefits of instance-side nested classes are. They can be used to build mixins, but
we achieve the same functionality with parameterized classes (see Section 6.4.2).
In Java, non-static member classes are used to implement interface adapters that
need access to the enclosing instance [9] (see Section 6.1.1). This is, however, the
only pattern for non-static member classes we could find in literature, and the
same functionality can be achieved by implementing the adapter as a class-side
nested class with an instance variable holding a reference to the adaptee.

As a consequence, we removed support for instance-side nested classes, but we
might add it again at a later point of time, if it needed.
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7.2. Bytecode Transformation

Whenever a nested class specification is instantiated in Matriona, all methods
in the specification are complied in the target class. When using parameterized
classes, this process happens multiple times, once for every target class. How-
ever, the bytecode is almost the same for every target class and differs only for
reads/writes to instance variables (see Section 4.6.2). In addition, enclosing and
outer must be bound to different literals.

This process could be optimized by caching compiled methods and replacing
affected bytecodes and literals during instantiation. For example, instead of re-
compiling the entire method, all references to instance variables could be replaced
with bytecodes with correct indices in a linear pass through the compiled method.

In Newspeak, slots (instance variables) cannot be accessed directly. They are
always accessed through automatically-generated accessor methods. Therefore,
all references to slots are message sends. Consequently, the bytecode of a method
for two different instantiations is always the same.

7.3. Squeak Integration

As of now, the integration of Matriona in Squeak is still limited. For example,
the new class browser does not have any refactoring tools yet. Furthermore, all
Squeak classes should be migrated to classes in Matriona, eventually, making
Repository (a separate globals dictionary for Matriona) obsolete. As described
in Section 4.7.1, a single top-level class Smalltalk should contain all modules and
Squeak base classes. Restructuring Squeak base classes in a hierarchical way will
probably be the biggest and most tedious task.

The Newspeak class organization might be a good starting point. Black et al.
described how traits can be used to modularize Smalltalk collection classes [8],
which might be another good starting point for restructuring these classes.

7.4. Extension Methods

In Smalltalk, an extension method is a method that extends an already existing
class in another package. Additional methods can be defined on the instance side
and on the class side. Adding new instance/class variables or removing methods
is not supported. In Matriona, extension methods can be written by defining
a class extension: a nested class with a class generator method that returns an
already existing class.

Extension methods in Smalltalk and in Matriona are controversial because they
do not have proper conflict handling. If an extension method is defined and
the target class has already a method with the same name, the original method
will be replaced, possibly breaking other code. Extension methods can be used
to add new functionality to existing classes required by libraries (e.g., methods
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for the visitor design pattern). If two libraries add extension methods with the
same name, the second extension always wins. In addition, removing an extension
method does not restore the previous state: the original method has to be restored
manually by the programmer.

Smalltalk extension methods break modularity. It is not possible to compose
two modules providing colliding extension methods, because there is currently
no way to resolve method conflicts without changing the source code of at least
one module. Furthermore, modules providing extension methods are not easily
replacable, because the original state is not restored once a module is removed
from the system.

Other programming languages (e.g., Ruby) have a concept similar to extension
methods in Smalltalk. A variety of alternatives to extension methods have been
proposed. In the rest of this chapter, we give a brief overview of some of them.
Future versions of Matriona might incorporate one of these alternatives.

Classboxes A classbox is a container of classes and methods. Classes can either
be defined or imported into a classbox (from another classbox). Within a classbox,
additional methods can be added or replaced on imported classes (local rebinding).
Code executed in the context of a certain classbox has a modified method lookup:
the system tries to lookup methods defined in the classbox first, and then proceeds
with the ordinary method lookup (receiver class and superclass hierarchy) [6].

A classbox effectively acts as a sort of sandbox. Every classbox can define its
own extensions methods for imported classes. Duplicate extension methods are
not a problem as long as they are defined in different classboxes.

Implementations of classboxes exist for Squeak [6] and Java. Classbox/J is a
Java implementation which does not only allow redefining fields and methods
but also member classes (nested/inner classes) [5].

Ruby Refinements In Ruby, all classes and modules are open for extensions. At
any position in the program, existing classes can be modified, possibly breaking
other code. Refinements are a way to confine class/module extensions to certain
classes. A refinement can be defined as part of a module. Whenever the module
is included, the refinement is active for code written in the including class [25].
Other code is not affected.

Context-oriented Programming Context-oriented programming (COP) is a mech-
anism to modularize heterogeneous crosscutting concerns [38]. In layer-based
context oriented programming, crosscutting concerns are grouped in layers. A
layer is a set of partial method definitions (possibly from different classes). Every
partial method definition belongs to exactly one base method. Whenever a layer
is active, the system executes the partial methods defined in the layer instead of
the corresponding base methods. Multiple layers can be active at the same time,
effectively building a layer composition stack. A partial method can contain a
proceed statement, which will call the next partial method, i.e., the partial method
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defined in the next layer on the layer composition stack. If there is no next layer
defining a partial method for the corresponding base method, the system will
call the base method.

Every module could group its extension methods in a separate layer, activate
that layer whenever code from the module is run, and deactivate the layer af-
terwards. Most COP implementations support scoped layer activation [2], which
essentially activates a layer, then runs a method or function/block closure, and
then deactivates the layer again.

With context-oriented programming, duplicate extension methods are no longer
a problem, as long as they are contained in different layers as partial methods.

7.5. Extending Inherited Nested Classes

The way inherited nested classes can be extended without subclassing has two
deficiencies. Firstly, there is currently no notation to add new instance variables
to the extended class, because the subclass statement is part of the corresponding
method in the superclass. Secondly, nested classes of already extended classes
cannot be further extended, because a super call would not call the original class
accessor method. Instead, the method lookup would start in the superclass of the
extended class (which is the same class as the not yet extended class).

It is still unclear, if extending inherited nested classes without subclassing
should be forbidden in favor of the variant with subclassing. Other programming
languages like Jx do this by default [62]. Extending inherited nested classes with
subclassing would solve the problems described above and is already possible.
However, forbidding extending without subclassing is difficult without restricting
the ability to write extension methods, which is technically a very similar concept.

7.6. Dependency Management

Nested classes in Matriona can be used to store modules in different versions.
There is at the moment no convenient way to share modules with other develop-
ers, except for exporting the module and importing it again. Future versions of
Matriona might have a central remote repository from which modules are auto-
matically downloaded (similar to a Maven repository) if a module is referenced
that is available in the image. The corresponding functionality could be part of a
doesNotUnderstand: handler in Repository, which is the data structure holding
references to all modules installed in the image.

There are also ideas for a better integration of the underlying source code
management system (e.g., git) in Matriona. If Matriona is aware of commits, it
cannot only be used to run applications in certain versions, but also to run appli-
cations at a certain commit. Whether the source code management system should
be completely reimplemented in Matriona or be external and under control of
Matriona is still open to discussion.
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7.7. Language-supported Version Control

In Matriona, different versions of the same module are represented as different
nested classes. The same mechanism could be used to integrate revision-based
version control systems in Squeak/Smalltalk [83]. Every revision/commit would
then be represented by a separate nested class. Matriona would ensure that nested
classes are created automatically based on the revisions in the underlying version
control system. Version control operations (e.g., commits and merges) could be
invoked by sending messages to a nested class representing a revision.

git://.../WebClient.git

0587a32
9cb7710
eea2773
65fc0b0
3366995
ebd43a4

1.0
1.1

2.0
commits tags

WebClient
0587a32+

Socket+

...

9cb7710+
...

...
+ v1
+ v2

WorkingCopy+
...

head

Figure 7.1.: Example: git-based version control with nested classes. WebClient is a mod-
ule and every commit in the underlying version control system corresponds to an
automatically-generated nested class in Matriona.

Figure 7.1 shows an example of a module named WebClient. The source code
is stored in a git repository. Every commit in git corresponds to a nested class
whose name is the SHA-1 hash of the commit. Matriona takes care of the syn-
chronization between the repository and the nested classes in the Squeak image.
The programmer would always modify the source code in the class WorkingCopy
and send a message like commit: to this class in order to perform a commit in
the git repository. git tags could be used to provide a versioning scheme that is
mirrored in the version control system.

This mechansim would allow the programmer to access any revision in the
Squeak image without having to load the source code for a certain revision
manually. Furthermore, multiple revisions of the same module could be run at
the same time. Having version control in the Squeak image would also reduce
the number of tools involved in the software development process and get rid of
the conceptual break of leaving the image for committing to a git repository (see
Section 4.8).

79





8. Summary

We presented Matriona, a module system for Squeak/Smalltalk. Matriona is
inspired by Newspeak and based on class nesting. Top-level classes are Smalltalk
globals and nested classes can be accessed by sending the class’ name as a
message to the enclosing class. Nested classes effectively establish a hierarchical
namespace, similar to Java pacakages, Ruby modules, or Newspeak nested classes.
In contrast to Newspeak, Matriona’s namespace is global.

8.1. Modularity in Newspeak

Arguably, Newspeak is even more modular than Matriona. For example, it does
not have a global namespace, which is a form of global state. Instead, every mod-
ule has its own separate namespace and can access dependencies only through
a platform object (see Section 6.2.3). Furthermore, Newspeak has a concept of
method visibility, making it possible to enforce an interface by declaring only API
methods as public methods.

However, these benefits come at a price. Even though Newspeak evolved out
of Squeak, it needs a modified virtual machine1 because of the way methods are
looked up, and its syntax differs heavily from Smalltalk. For example, classes
are not defined through subclass:instanceVariableNames: message sends, but
through a new syntax which mimics a block structure known from Java or C++.
The Hopscotch-based development environment [23] supports navigating nested
classes and is optimized for Newspeak’s way of defining classes, but looks com-
pletely different from the Squeak system browser.

In contrast, Matriona’s class browser was designed to look similar to Squeak’s
system browser, so that it is easy to use for Squeak developers. We tried to
limit the number of new concepts, such that code written in Matriona should
look familiar to Smalltalk developers. For example, there is no new syntax or
user interface element for defining classes and instance variables. Instead, nested
classes are defined through class generator methods which appear as and are in
fact Smalltalk methods. We think that Matriona exhibits a good balance between
modularity and usability. The goal of this project was not to implement a new
modular programming language but to bring modularity concepts to Squeak.
This allows developers to reuse existing Squeak/Smalltalk libraries and code. In
Newspeak, existing Smalltalk code must be rewritten and adapted to the new
syntax.

1The COG VM is the development VM for Newspeak. See also http://www.mirandabanda.org/
cogblog/about-cog/.
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8.2. Modularity in Matriona

In Section 2, we presented three modularity problems in Squeak. In Matriona, we
addressed these deficiencies as follows.

• Duplicate Class Names: Classes can be nested in Matriona, establishing a hierar-
chical namespace. Classes nested in different enclosing classes are allowed to
have the same name and can coexist, making project prefixes obsolete, which
supports readability of the code.

• Dependency Management: Parameterized classes allow for a form of external
configuration, where the user/client of a class can specify which implemen-
tation to use. Multiple versions of the same module can be loaded and used
at the same time by making versioning information part of the hierarchical
namespace, effectively solving the problem of versioning conflicts.

• Hierarchical Decomposition: Matriona’s hierarchical namespace makes it possible
to reflect modular decomposition in a way that is more than just one level deep
(in comparison to Smalltalk packages).

We claim that Matriona is modular with respect to Meyer’s modularity require-
ments [56] (see Section 1.1).

• Decomposability: Nested classes make it possible to delegate responsibilites to
nested classes, whose only purpose can be to serve their enclosing classes.

• Composability: Nested classes are first-class objects, making it possible to pass
class trees around. As in any object-oriented programming language, compo-
sition of objects can be used to create more complex artifacts. Mixins are a
form of code reuse and facilitate modular composability, as they can be used
to encapsulate behavior and can be applied to any class.

• Understandability: Nested classes promote understandability if modular decom-
position is applied properly. It is then easier to find a certain piece of func-
tionality in the code, by using the nested class hierarchy as a decision graph.
Nested classes can also be used to hide low-level or implementation-specific
code from the reader.

• Continuity: By encapsulating behavior common to multiple classes in a mixin,
only that mixin has to be modified when changing the behavior in question.

• Protection: Matriona does not introduce any new features promoting modular
protection. However, external configuration of classes encourages the program-
mer to make as few assumptions about concrete implementations of dependen-
cies as possible. Whenever implementation-specific behavior of dependencies
changes, the class is less likely to malfunction.
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We think that Matriona is a module system in the Smalltalk spirit with respect
to Dan Ingalls’ Design Principles Behind Smalltalk [42] (see Section 1.2) as follows.

• Personal Mastery: Nested classes are the only new concept in Matriona, making
it easy to learn how to use Matriona. In addition, we claim that the hierarchical
namespace established through class nesting makes it easier to write code that
is understandable (comprehensible) for a single individual.

• Factoring: The concept of factoring goes hand in hand with Meyer’s definition of
modular composability and is supported through object-oriented composition
and mixins.

• Modularity: In our opinion, Matriona is modular with respect to Meyer’s mod-
ularity requirements as described above.

• Good Design: The single fundamental concept behind Matriona is class nesting.
Parameterized classes and mixins evolve out of class nesting in a natural way.
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Appendix A.

Implementation Details

A.1. Determining the Lexical Scope

In this section, we describe in more detail how Matriona determines the collection
of enclosing classes which is necessary for generating a LexicalScope instance for
the keywords outer and scope. The system has to traverse the meta model. It is
not sufficient to simply return the collection { enclosing. enclosing enclosing.
enclosing enclosing enclosing. ... }. For example, in Figure A.1, C is a class
extension whose target class is D. B is a class extension whose target class is
G. Therefore, in foo, enclosing is B (which is the same class object as G) and
enclosing enclosing is H, because G enclosing is H.

A B
+foo()

C

F E D

GH

Figure A.1.: Example: Nested classes with class extensions. All gray classes are class
extensions. Horizontal arrows indicate class nesting. Vertical arrows indicate target class
references.

Figure A.2 shows the relevant parts of the meta model for determining the
lexical scope of foo. Every class specification has a reference to its meta class
specification and vice versa. For every class specification, there is a corresponding
corresponding method specification holding the class cache and the instantia-
tions dictionary which also acts as the argument cache (see Section 4.6.4).
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Appendix A. Implementation Details

a MetaClassSpec

a ClassSpec

A

a MethodSpec

a MetaClassSpec

a ClassSpec

B

a MethodSpec

a MetaClassSpec

a ClassSpec

C

a MethodSpec

parent parent

a MethodSpec

foo

parent

classDict
classDict

theClassSpec

theMetaClassSpec

theMethodSpec

theClassSpec

theClassSpec

theMetaClassSpec

theMethodSpec

theClassSpec

theClassSpec

theMetaClassSpec

theMethodSpec

theClassSpec

Figure A.2.: Example: Detailed meta model. Class B is nested within class A and class C
is nested within class B. foo is an instance method of class C. All three entities within
a box have the same meta class specification as a parent.

Figure A.3 shows the algorithm for determining the lexical scope, given that
a method specification (foo) is instantitated within the target class cls. The first
enclosing class should be B. B’s meta class specification can be reached by follow-
ing the parent pointer twice. However, we do not need the specification but the
actual class object of B. The instantiations dictionary maps class specification
instantiations (e.g. the class object C which is the target class cls) to an array
of the enclosing class object and the arguments provided to the class accessor
method1. The enclosing class object is always the first element in that array. There-
fore, the first enclosing class in the lexical scope of foo is the first element in the
instantiations array of self parent parent theClassSpec theMethodSpec.

MethodSpecification»lexicalScopeIn: cls
| enclosingClasses currentCls currentMetaClassSpec |
enclosingClasses := OrderedCollection new.
currentCls := cls.
currentMetaClassSpec := self parent parent.

enclosingClasses add: (currentCls :=
(currentMetaClassSpec theClassSpec theMethodSpec

instantiations at: currentCls) first).

[ currentMetaClassSpec parent isNil ] whileFalse: [
currentMetaClassSpec := currentMetaClassSpec parent.
enclosingClasses add: (currentCls :=

(currentMetaClassSpec theClassSpec theMethodSpec
instantiations at: currentCls) first) ].

^ enclosingClasses

Figure A.3.: Algorithm: Determining all enclosing classes in the lexical scope of a method.

1Note that instantiations can contain multiple class specification instantiations in case the class
in question is an extended inherited nested class which was not subclassed or a paramterized
class.
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A.2. Traits

The next enclosing classes can be found by following the parent relationship
and using the previously-found enclosing class as a key in the next instantia-
tions dictionary.

A.2. Traits

In Section 5.7, we gave an overview of how traits can be implemented with nested
classes and include hooks, but did not describe how to invoke a trait method
within the resolution code of a conflicting method.

In Matriona, traits are implemented as mixins, which are wrapped in unparam-
eterized classes (unparameterized class generator pattern, see Section 5.5). Figure A.4
shows how trait methods can be invoked. The programmer has to call the method
trait:perform:withArguments: and has to provide the trait (i.e., the unparam-
eterized class generator), the message symbol, and a collection of arguments.
Matriona then goes through all superclasses of the receiver, in order to find the
mixed-in trait. ProtoObject provides a functionality which can then be used to
execute the corresponding CompiledMethod object in the context of self.

Object»trait: classGenerator perform: symbol withArguments: args
| trait |
trait := self class allSuperclasses detect: [ :cls |

cls specification includes:
(classGenerator specification classAt: #Mixin:) ].

^ self withArgs: args executeMethod: trait>>symbol

Figure A.4.: Algorithm: Resolving trait conflicts. This method can be used to invoke a
method implementation in a specific trait.

Note that it is important to lookup the mixed-in trait in the superclass hierarchy
of the receiver. Every mixed-in trait (trait instantiation) provides the same methods,
but whenever instance variables are accessed, the bytecode of two instantiations
of the same trait method can differ (see Section 4.6.2).
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