Matriona: Class Nesting with Parameterization

in Squeak/Smalltalk

Matthias Springer ~ Fabio Niephaus
Robert Hirschfeld Hidehiko Masuhara

Hasso Plattner Institute, University of Potsdam
Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

March 16, 2016

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk ﬂ

Overview

Introduction
Requirements
Mechanism
Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 2 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction m

Vision for Matriona

o ...for Squeak/Smalltalk

- Easy to implement (metaprogramming, reflection)
— Needs a module system

Matriona should be a module system ... (\o O/)
T——@—

... for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications

Single OS process, multiple applications in the same object space (image)

... that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, .. .)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Vision for Matriona

Matriona should be a module system ...

o ...for Squeak/Smalltalk

- Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications

Single OS process, multiple applications in the same object space (image)

... that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, .. .)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Vision for Matriona

Matriona should be a module system ...
e ...for Squeak/Smalltalk

— Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

o ...for a programming environment that hosts a variety of
applications

Single OS process, multiple applications in the same object space (image)

... that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, .. .)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Vision for Matriona

Matriona should be a module system ...

o ...for Squeak/Smalltalk

- Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications
Think of the programming language as an operating system

... that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, .. .)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Vision for Matriona

Matriona should be a module system ...
e ...for Squeak/Smalltalk

— Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)

Cannot turn off (restart) system to install new software

o ...for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don't fit into a language.
There shouldn’t be one.” (Dan Ingalls)

... that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, .. .)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction m

Vision for Matriona

jleMorph(4069) @0

Matriona should be a module system ...

o ...for Squeak/Smalltalk

— Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don't fit into a language.

There shouldn't be one.” (Dan Ingalls)

 ...that makes it easy to experiment (exploratory programming)

Try out new stuff and see what happens (Live programming, inspector, ...)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction m

Vision for Matriona

leMorph(4069) @0

Matriona should be a module system ...

o ...for Squeak/Smalltalk

— Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)

Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don't fit into a language.

There shouldn't be one.” (Dan Ingalls)

... that makes it easy to experiment (exploratory programming)

“A system [...] to serve the creative spirit” (Dan Ingalls)

... that promotes modularity®
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction m
Vision for Matriona

*—o
—

Matriona should be a module systemo

o ...for Squea.k/SmaIItaIk . . v WERN
— Easy to implement (metaprogramming, reflection)
— Needs a module system

... for long-living systems (c.f. highly available systems)

Cannot turn off (restart) system to install new software

e ...for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don't fit into a language.

There shouldn't be one.” (Dan Ingalls)

... that makes it easy to experiment (exploratory programming)

Try out new stuff and see what happens (Live programming, inspector, ...)

...that promotes modularity!
(composability, decomposability, understandability)

!B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Matriona

MODULARITY 2016 HPI / TiTech March 16, 2016 4 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Running Example: Space Cleanup

 All game objects are subclasses of Morph
e Game is built using Morph composition

o Classes: Item, Player, ...

MODULARITY 2016 HPI / TiTech March 16, 2016 5/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Running Example: Space Cleanup

TileUnder Submorph

 All game objects are subclasses of Morph
e Game is built using Morph composition
o Classes: Item, Player, ..., Tile

MODULARITY 2016 HPI / TiTech March 16, 2016

5/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Running Example: Space Cleanup

neighborAt: #north

neighborAt:
#west

TileUnder Submorph

 All game objects are subclasses of Morph

eighborAt:
#east

* Game is built using Morph composition

o Classes: Item, Player, ..., Tile, Level

MODULARITY 2016 HPI / TiTech March 16, 2016

5/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Introduction

Running Example: Space Cleanup

neighborAt: #north

neighborAt:
#west

TileUnder Submorph

class Level extends Morphic.Morph {
int stepTime() { return 1000; }

eighborAt:
#east

 All game objects are subclasses of Morph
» Game is built using Morph composition

o Classes: Item, Player, ..., Tile, Level

MODULARITY 2016 HPI / TiTech March 16, 2016

5/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements

Overview

Requirements

MODULARITY 2016 HPI / TiTech

March 16, 2016 6 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

Module Versioning

e Goal: Run a variety of applications, composability

» Dependency Conflicts: Multiple applications require the same
dependency in different versions

Application A —> Library C v1.4 @
Application B —> Library C v1.6 @

* Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

Module Versioning

e Goal: Run a variety of applications, composability

* Dependency Conflicts: Multiple modules require the same
dependency in different versions

A — Library C — Library E v1.4

Application
™ Library D —> Library E v1.6

e Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

Module Versioning

» Goal: Run a variety of applications, composability, long-living system

* Dependency Conflicts: Multiple modules require the same
dependency in different versions

__» Library C — Library E v1.4

Application A
™ Library D —> Library E v1.6

o Application Upgrade: Install both versions, then perform upgrade
(possibly live upgrade)

e Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

Module Inheritance

e Goal: Exploratory programming, decomposability

e Task: Add unforeseen variation points. Design variants of Space
Cleanup, where . ..
— the speed of the game can be adjusted (overwrite Level»stepTime)
— items can deal damage (add methods to all items)

Space Cleanup [Speed Cleanup [
Sl
tLevel -r_IEe_nlér)

MODULARITY 2016 HPI / TiTech March 16, 2016 8/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

Module Inheritance

e Goal: Exploratory programming, decomposability
e Task: Add unforeseen variation points. Design variants of Space
Cleanup, where ...

- the speed of the game can be adjusted (overwrite Level»stepTime)
~ items can deal damage (add methods to all items)

Space Cleanup [Speed Cleanup [
Sl
i

e Design Constraints: Apply changes to the original application
automatically, leave the original application intact

MODULARITY 2016 HPI / TiTech March 16, 2016 8/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Requirements m

External Configuration

e Goal: Exploratory programming, composability

o Task: Design a variant of Space Cleanup, where a Ul framework
implementation is passed as an argument

Space Cleanup [J

%

— (param)

¢ Problem:

— Ul elements are subclasses of Morphic.Morph
- Dependency cannot simply be passed as argument to
constructor /factory method, because class hierarchy depends on it

MODULARITY 2016 HPI / TiTech March 16, 2016 9/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

Overview

Mechanism

MODULARITY 2016 HPI / TiTech

March 16, 2016

10 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism m

Mechanism

e Classes can have variables, methods, and nested classes
e Nested classes are . ..

— ...class-side members
— ...accessed using message sends
~ ...can have parameters (accessed using message sends to class object)

o Top-level class is called module

MODULARITY 2016 HPI / TiTech March 16, 2016 11 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Name Lookup Example (1/4)

Smalltalk
I
L Collection
— Algorithm
Sorting
sort(...)
L Array Start lookup in self class,
then enclosing classes
Sort(.. -_)‘ void sor((.N)V{ 1
N result = scope.Algorithm.Sorting.sort(...)
L

scope.Algorithm should resolve to St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016 12 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Name Lookup Example (2/4)

Smalltalk
[
|—CoIIection |—SpaceCIeanup
— Algorithm — Algorithm
Sorting |—Graph
sort(...)

- Array «——— L ResizingArray

extends Smalltalk.Collection.Array

I— Sort(.. .) void sort(...) { 1

result = scope.Algorithm.Sorting.sort(....)

y

St.Scu.ResizingArray.sort: scope.Algorithm should resolve to
St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016 13 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

Name Lookup Example 3/4

ISmaIItaIk

|—QuickCoIIection — |—CoIIection

Lextends Smalltalk.Collection
~ Algorithm > — Algorithm
: extends super.Algorithm I_
Sorting » L Sorting
I_extends super.Sorting
sort(...) sort(...)
‘- Array L Array

Sort(.. .) void sort(...) {

result = scope.Algorithm.Sorting.sort(....)

y

St.QC.Array.sort: scope.Algorithm should resolve to
St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016

14 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Name Lookup Example 4/4

Smalltalk
I
L QuickCollection —— L Collection L SpaceCleanup
Lextends Smalltalk.Collection
~ Algorithm > - Algorithm — Algorithm
Lextends super.Algorithm L L
i L Sorting » L Sorting Graph
' Lextends super.Sorting L
sort(...) sort(...)
Array - Array «—— L ResizingArray

extends Smalltalk.Collection.Array

result = scope.Algorithm.Sorting.sort(...)

Lsort(..._)_‘ v sori() € 1

3

e scope.Algorithm is late bound and can refer to classes, methods,
parameters

* Name lookup mechanism determines which Algorithm to choose

MODULARITY 2016 HPI / TiTech March 16, 2016 15 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Inherited Class Copies

Smalltalk

|

LQuickCoIIection LCoIIection class exists twice

extends Smalltalk.Collection i
r . - meta programming
LAIgorlthm > - Algorithm —— (allInstances)
Lextends super.Algorithm - class-side state
i L Sorting » L Sorting - possibly different
' Lextends super.Sorting L parameters
sort(...) sort(...)

L. Array — Array

L SOI’t(. .) void sort(...

)4
result = scope.Algorithm.Sorting.sort(...)

3

* super(St.QC.Algorithm) is an
inherited class copy of St.C.Algorithm

e Notation: St.QC.Algorithm[St.C.Algorithm]

MODULARITY 2016 HPI / TiTech March 16, 2016 16 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

High-level Idea

* Idea: Generalize method lookup to class nesting hierarchies
o Standard Method Lookup:

sub(C) can override methods defined in C
» Nesting-aware Name Lookup:

— sub(C) can override names defined in C

— sub(enclosing(C)) can override names defined in enclosing(C)

— sub(enclosing(enclosing(C))) can override names defined in
enclosing(enclosing(C))

MODULARITY 2016 HPI / TiTech March 16, 2016

17 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Relative Name Lookup (1/2)

Smalltalk

QuickCollection 4«>|_L Collection I_L SpaceCleanup

Lextends Smalltalk.Collection
— Algorithm |- Algorithm Algorithm
extends super.Algorithm L L
Sorting » L Sorting Graph
Lextends super.Sorting
sort(...) sort(...)

Array Array

ResizingArray
extends Smalltalk.Collection.Array
SOI‘t(. .,) Void sort() {
o result = scope.Algorithm.Sorting.sort(...)

¥

Lexical Class Nesting Hierarchy: static hierarchy of enclosing classes

Run-time Class Nesting Hierarchy: dynamic hierarchy of enclosing
classes, taking into account run-time (polymorphic) type of receiver

L =(St.C.Array,St.C,St)
Ry = (St.QC.Array[St.C.Array],St.QC,St)
R, = (St.Scu.ResizingArray, St.Scu, St)

MODULARITY 2016 HPI / TiTech March 16, 2016 18 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Relative Name Lookup (2/2)

Smalltalk
1
QuickCollection *«J_L Collection |_L SpaceCleanup
Lextends Smalltalk.Collection
- Algorithm |- Algorithm Algorithm
Lextends super.Algorithm
;. L Sorting » L Sorting Graph
i Lextends super.Sorting L
sort(...) sort(...)
Array Array ResizingArray

extends Smalltalk.Collection.Array

L Sort(“ .)
*{ result = scope.Algorithm.Sorting.sort(...)
=

Traverse both lexical (L) and run-time class nesting hierarchy (R) in
parallel (R takes precedence), as long as one of the following is true, where
lelLand reR.

e r=1

e risasubclass of /,i.e, r>1

e ris an inherited class copy of /, i.e., r ~ [
s a subclass of an inherited class copy of /, i.e., r>., /

®r

MODULARITY 2016 HPI / TiTech March 16, 2016 19 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Example: Relative Name Lookup (1/2)

Smalltalk
I
LCoIIec’cion LSpaceCIeanup
— Algorithm — Algorithm
Sorting LGraph
sort(...)
--------- - [
L Array | LiResizingArray!
- -----Y© l___e_x'l‘.éﬁaE'Srgn_anﬁﬂUY@ction.Array
Sort(. .) vmfe:ﬁ:’t‘(;s)ct{zpe.AIgonthm.Somng.sort(..,)
|
St.Scu.ResizingArray > St.C.Array (— R/ L)

Lookup fails in both R and then L

MODULARITY 2016 HPI / TiTech March 16, 2016 20 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Example: Relative Name Lookup (1/2)

Smalltalk
I L L
T Tt i 1
i Collection ! i SpaceCleanup !
| Sty I____© I p up®
Algorithm Algorithm
Sorting LGraph
Lsort(...)
Array ResizingArray

extends Smalltalk.Collection.Array

L Sort(o .) void sort(...) { 1

result = scope.Algorithm.Sorting.sort(...)

3

St.Scu ~{=,>,~,>..} St.C (— L)
Lookup succeeds in L

MODULARITY 2016 HPI / TiTech March 16, 2016 20 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism ﬂ

Example: Relative Name Lookup (2/2)

Smalltalk

I
LQuickCoIIection — LCoIIec’cion

Lextends Smalltalk.Collection
~ Algorithm > - Algorithm
Lextends super.Algorithm L
i L Sorting > L Sorting
' Lextends super.Sorting L
sort(...) sort(...)
[Array | [Array |
L Sort(. .) vmfe:ﬁ:’t‘(;s)ct{zpe.AIgonthm.Somng.sort(..,)
=
St.QC.Array ~» St.C.Array (— R, L)

Lookup fails in both R and then L

MODULARITY 2016 HPI / TiTech March 16, 2016 21 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

Example: Relative Name Lookup (2/2)

Smalltalk

|jchkCoIIectlonu—» |—<C0||eCtIO @

[ext’enas'bmaTlfaTk .Co ion T

Algorithm > - Algorithm
: extends super.Algorithm
Sorting » L Sorting
Lextends super.Sorting L
sort(...) sort(...)
Array Array

L SOI’t(. .) void sort(...

)4
result = scope.Algorithm.Sorting.sort(...)

-

St.QC > St.C (— R L)
Lookup succeeds in R

MODULARITY 2016 HPI / TiTech March 16, 2016

21 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism m

Class Nesting Details

e Lookup mechanism is similar to Java, differs from Newspeak
(lookup in self class, then superclasses, then enclosing class and
superclasses, etc.)

e Nested classes are virtual and can be overridden

 Lookup mechanism looks up methods and nested classes (and
parameters)

* extends supports arbitrary expressions

e Overwritten and original nested classes do not have to be in a
subclass/subtype relationship (c.f. Jx, gbeta)

MODULARITY 2016 HPI / TiTech March 16, 2016 22 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

Class Parameterization (1/2)

ok wN

Same name lookup mechanism
Name lookup precedence (— shadowing)
1.

Method in r
Parameter in r
Classin r
Method in /
Parameter in /
Class in /

MODULARITY 2016 HPI / TiTech

Must provide argument to obtain concrete class object

Access parameter value via message send to class object

March 16, 2016

Different class object for every instantiation (c.f. C4++ templates)

23 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Mechanism

Class Paramterization (2/2)

ISmalltalk

|—QuickCoIIection — |—Collection

I_extends Smalltalk.Collection
— Algorithm > - Algorithm
extends super.Algorithm
Sorting > L Sorting
I—extends super.Sorting
sort(...) sort(...)

t- Array Smalltalk

|
LQuickAIgorithm
Algorithm
Sorting
sort(...)

Array
sort(.. .‘)__

t Collection(Algorithm)

void sort(...) {
result = scope. Algorithm.Sorting.sort(....)

Y

MODULARITY 2016

HPI / TiTech

March 16, 2016 24 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples

Overview

Examples

MODULARITY 2016 HPI / TiTech

March 16, 2016

25 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples

Module Versioning

Smalltalk
L SpaceCleanup

- v1

extends Smalltalk.Matriona.Versioning

- vl

extends Smalltalk.Matriona.Version
— M o rp h iC return Smalltalk
.Morphic.v3.v1;
— Level

extends scope.Morphic.Morph

extends Smalltalk.Matriona.Version

H litalk
— Morphic__ | “wmes

>=<=(2, 4);

L v2

MODULARITY 2016 HPI / TiTech

V2 :

Convenience
methods: <, <=, >,
>=, <>, <=>, <>=,
<=>=, latest
Name lookup finds
classes, parameters,
and methods

Morphic is an import

March 16, 2016 26 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples m

External Configuration (1/2)
Smalltalk

LSpaceCIeanup(Morphic)
Tile

extends scope.Morphic.Morph

—> - Item

extends scope.Morphic.Morph

— — Player

extends scope.ltem

- L Monster

extends scope.ltem

MODULARITY 2016 HPI / TiTech

e Decouple
implementation from
dependencies

e Morphic parameter
should implement
Morphic interface

March 16, 2016 27 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples ﬂ

External Configuration (2/2)

class Smalltalk {
class SpaceCleanup<Morphic implements Smalltalk.Morphic.Interface> {
class Tile extends scope.Morphic.Morph {

class Item extends scope.Morphic.Morph { /* ... */ }
class Player extends scope.Item { /* ... */ }
class Monster extends scope.Item { /* ... */ }
}
static void run() { /*x ... */ }
}
}

Smalltalk.SpaceCleanup<Smalltalk.NativeRendering>.run();

MODULARITY 2016 HPI / TiTech March 16, 2016 28 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples

Module Inheritance

e Task: Design variants of Space Cleanup, where ...
- the speed of the game can be adjusted
(overwrite Level»stepTime)
— items can deal damage (add methods to all items)

Space Cleanup [Speed Cleanup [
S a I e e
Level i-@%ﬂl@

¢/ Design Constraints: Apply changes to the original application
automatically, leave the original application intact

MODULARITY 2016 HPI / TiTech March 16, 2016 29 / 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples ﬂ

Module Inheritance: Speedy Space Cleanup

class Smalltalk {
class SpaceCleanup {
Level currentLevel;
class Level { /* ... #/ }
}

class SpeedySpaceCleanup extends scope.SpaceCleanup {
O00verride class Level extends super.Level {
int stepTime;
00verride int stepTime() { return stepTime; }

}

void setSpeed(int stepTime) {
currentlevel.stepTime = stepTime;
}
}
}

MODULARITY 2016 HPI / TiTech March 16, 2016 30/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples ﬂ

Module Inheritance: Damage Space Cleanup (1/3)

Smalltalk

SpaceCleanup
o Damage functionality should be

Tile implemented in items
& | Item * Need to define subclasses of
extends Smalltalk Item and Monster

.Morphic.Morph
* Monstergmg should inherit from

— - Player both Monster and Itemgmg
extends scope.Item

L— L Monster

extends scope.ltem

MODULARITY 2016 HPI / TiTech March 16, 2016 31/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples ﬂ

Module Inheritance: Damage Space Cleanup (2/3)
Smalltalk

|
LSpaceCIeanup — LDamageSpaceCIeanup

extends Smalltalk.SpaceCleanup

Tile < Tile
extends super.Tile
> = TE@IMN e . Item
extends Smalltalk.Morphic.Morph : extends super.Iltem
damage

— Player E - " daTage j
extends scope.Item)

[Player

L L MONStea i Monster
extends scope.Itenfdamage |jxtends super.Monster
A { #player -> 0.25.
#slime -> 0.33 } L damage

MODULARITY 2016 HPI / TiTech March 16, 2016 32/ 36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples

Module Inheritance: Damage Space Cleanup (3/3)

Smalltalk
|

|~SpaceCIeanup — LDamageSpaceCIeanup
Lextends Smalltalk.SpaceCleanup

Tile Tile
e . extends super.Tile
Item = Item
extends Smalltalk.Morphic.Morph ’,(extends super.Item
i: damage
damage
Player

extends scope.Item

t Player

Monster« Monster
extends scope.Itenfdamage Lextends super.Monster
~ { #player -> 0.25.
#slime -> 0.33 } damage

Resulting superclass hierarchy of Monstergmg:
1. St.DScu.Tile.Monster [St.Scu.Tile.Monster]
2. St.DScu.Tile.Item
3. St.DScu.Tile.Item[St.Scu.Tile.Item]
4. St.Morphic.Morph

MODULARITY 2016 HPI / TiTech March 16, 2016

33 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Examples ﬂ

Generalization: More than 2 Hierarchies

e el it B Sl ek e L
4—‘_#__-—____ - extendssuper-X-—————> Kionds superX
<|--1----1----F- o30S I e ol
extends X || 1T I atends super¥- - -~ < T3 [extends super.Y
- ;_‘_‘_i_“_’_i _______ T o T
AR SR — A i Z)

Effectively implements multiple inheritance

Related work: Mixin layers

MODULARITY 2016 HPI / TiTech March 16, 2016 34 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Conclusion

Overview

Conclusion

MODULARITY 2016 HPI / TiTech

March 16, 2016

35 /36

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk » Conclusion m

Conclusion

* Vision for Matriona: support long-living systems, multiple
applications in one execution environment, exploratory programming,
modularity (composability, decomposability, understandability)

e Techniques: Module versioning, module inheritance, external
configuration

* First steps: A module system that ...

— hosts modules in various versions
(— composability, long-living systems)
— makes it easy to design module variants
(— exploratory programming, decomposability)

e Next steps:

— Migration of running applications (state/object migration)
~ Class extensions (backward compatibility)!
~ Method/class visibility (modular protection)

YLASSY workshop: Hierarchical Layer-based Class Extensions in Squeak/Smalltalk
MODULARITY 2016 HPI / TiTech March 16, 2016 36 / 36

	Introduction
	Requirements
	Mechanism
	Examples
	Conclusion

