
Matriona: Class Nesting with Parameterization
in Squeak/Smalltalk

Matthias Springer Fabio Niephaus
Robert Hirschfeld Hidehiko Masuhara

Hasso Plattner Institute, University of Potsdam
Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

March 16, 2016

Matriona: Class Nesting with Parameterization in Squeak/Smalltalk

Overview

Introduction

Requirements

Mechanism

Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 2 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
Single OS process, multiple applications in the same object space (image)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
Single OS process, multiple applications in the same object space (image)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of
applications
Single OS process, multiple applications in the same object space (image)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)
1B. Meyer: Object-Oriented Software Construction

MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
Think of the programming language as an operating system

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don’t fit into a language.
There shouldn’t be one.” (Dan Ingalls)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)
1B. Meyer: Object-Oriented Software Construction

MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don’t fit into a language.
There shouldn’t be one.” (Dan Ingalls)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don’t fit into a language.
There shouldn’t be one.” (Dan Ingalls)

• . . . that makes it easy to experiment (exploratory programming)
“A system [...] to serve the creative spirit” (Dan Ingalls)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Vision for Matriona

Matriona should be a module system . . .

• . . . for Squeak/Smalltalk
− Easy to implement (metaprogramming, reflection)
− Needs a module system

• . . . for long-living systems (c.f. highly available systems)
Cannot turn off (restart) system to install new software

• . . . for a programming environment that hosts a variety of applications
“An operating system is a collection of things that don’t fit into a language.
There shouldn’t be one.” (Dan Ingalls)

• . . . that makes it easy to experiment (exploratory programming)
Try out new stuff and see what happens (Live programming, inspector, . . .)

• . . . that promotes modularity1

(composability, decomposability, understandability)

1B. Meyer: Object-Oriented Software Construction
MODULARITY 2016 HPI / TiTech March 16, 2016 3 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Matriona

MODULARITY 2016 HPI / TiTech March 16, 2016 4 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Running Example: Space Cleanup

• All game objects are subclasses of Morph
• Game is built using Morph composition
• Classes: Item, Player, . . .

MODULARITY 2016 HPI / TiTech March 16, 2016 5 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Running Example: Space Cleanup

• All game objects are subclasses of Morph
• Game is built using Morph composition
• Classes: Item, Player, . . . , Tile

MODULARITY 2016 HPI / TiTech March 16, 2016 5 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Running Example: Space Cleanup

• All game objects are subclasses of Morph
• Game is built using Morph composition
• Classes: Item, Player, . . . , Tile, Level

MODULARITY 2016 HPI / TiTech March 16, 2016 5 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Introduction

Running Example: Space Cleanup

class Level extends Morphic.Morph {
int stepTime() { return 1000; }

}

• All game objects are subclasses of Morph
• Game is built using Morph composition
• Classes: Item, Player, . . . , Tile, Level

MODULARITY 2016 HPI / TiTech March 16, 2016 5 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Overview

Introduction

Requirements

Mechanism

Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 6 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Module Versioning

• Goal: Run a variety of applications, composability
• Dependency Conflicts: Multiple applications require the same
dependency in different versions

Application A

Application B

Library C v1.4

Library C v1.6

provides
class Foo

provides
class Foo

• Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Module Versioning

• Goal: Run a variety of applications, composability
• Dependency Conflicts: Multiple modules require the same
dependency in different versions

Application A
Library C

Library D

Library E v1.4

Library E v1.6

• Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Module Versioning

• Goal: Run a variety of applications, composability, long-living system
• Dependency Conflicts: Multiple modules require the same
dependency in different versions

Application A
Library C

Library D

Library E v1.4

Library E v1.6

• Application Upgrade: Install both versions, then perform upgrade
(possibly live upgrade)

• Problem: Naming conflicts between versions

MODULARITY 2016 HPI / TiTech March 16, 2016 7 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Module Inheritance

• Goal: Exploratory programming, decomposability
• Task: Add unforeseen variation points. Design variants of Space
Cleanup, where . . .

− the speed of the game can be adjusted (overwrite Level»stepTime)
− items can deal damage (add methods to all items)

Space Cleanup

Level Item ...

Speed Cleanup

Level Item ...
+

MODULARITY 2016 HPI / TiTech March 16, 2016 8 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

Module Inheritance

• Goal: Exploratory programming, decomposability
• Task: Add unforeseen variation points. Design variants of Space
Cleanup, where . . .

− the speed of the game can be adjusted (overwrite Level»stepTime)
− items can deal damage (add methods to all items)

Space Cleanup

Level Item ...

Speed Cleanup

Level Item ...
+

• Design Constraints: Apply changes to the original application
automatically, leave the original application intact

MODULARITY 2016 HPI / TiTech March 16, 2016 8 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIRequirements

External Configuration

• Goal: Exploratory programming, composability
• Task: Design a variant of Space Cleanup, where a UI framework
implementation is passed as an argument

Space Cleanup

Level Item ...

? (param)

• Problem:
− UI elements are subclasses of Morphic.Morph
− Dependency cannot simply be passed as argument to

constructor/factory method, because class hierarchy depends on it

MODULARITY 2016 HPI / TiTech March 16, 2016 9 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Overview

Introduction

Requirements

Mechanism

Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 10 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Mechanism

• Classes can have variables, methods, and nested classes
• Nested classes are . . .

− . . . class-side members
− . . . accessed using message sends
− . . . can have parameters (accessed using message sends to class object)

• Top-level class is called module

MODULARITY 2016 HPI / TiTech March 16, 2016 11 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Name Lookup Example (1/4)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

Start lookup in self class,
then enclosing classes

scope.Algorithm should resolve to St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016 12 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Name Lookup Example (2/4)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array

St.Scu.ResizingArray.sort: scope.Algorithm should resolve to
St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016 13 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Name Lookup Example 3/4

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

St.QC.Array.sort: scope.Algorithm should resolve to
St.Collection.Algorithm

MODULARITY 2016 HPI / TiTech March 16, 2016 14 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Name Lookup Example 4/4
Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array

• scope.Algorithm is late bound and can refer to classes, methods,
parameters

• Name lookup mechanism determines which Algorithm to choose

MODULARITY 2016 HPI / TiTech March 16, 2016 15 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Inherited Class Copies
Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

class exists twice
- meta programming
 (allInstances)
- class-side state
- possibly different
 parameters

• super(St.QC.Algorithm) is an
inherited class copy of St.C.Algorithm

• Notation: St.QC.Algorithm[St.C.Algorithm]

MODULARITY 2016 HPI / TiTech March 16, 2016 16 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

High-level Idea

• Idea: Generalize method lookup to class nesting hierarchies
• Standard Method Lookup:

sub(C) can override methods defined in C
• Nesting-aware Name Lookup:

− sub(C) can override names defined in C
− sub(enclosing(C)) can override names defined in enclosing(C)
− sub(enclosing(enclosing(C))) can override names defined in

enclosing(enclosing(C))
− . . .

MODULARITY 2016 HPI / TiTech March 16, 2016 17 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Relative Name Lookup (1/2)
Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array

• Lexical Class Nesting Hierarchy: static hierarchy of enclosing classes
• Run-time Class Nesting Hierarchy: dynamic hierarchy of enclosing
classes, taking into account run-time (polymorphic) type of receiver

• L = (St.C.Array, St.C, St)
• R1 = (St.QC.Array[St.C.Array], St.QC, St)
• R2 = (St.Scu.ResizingArray, St.Scu, St)

MODULARITY 2016 HPI / TiTech March 16, 2016 18 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Relative Name Lookup (2/2)
Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array

Traverse both lexical (L) and run-time class nesting hierarchy (R) in
parallel (R takes precedence), as long as one of the following is true, where
l ∈ L and r ∈ R .

• r = l
• r is a subclass of l , i.e., r B l
• r is an inherited class copy of l , i.e., r l
• r is a subclass of an inherited class copy of l , i.e., r B l

MODULARITY 2016 HPI / TiTech March 16, 2016 19 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Example: Relative Name Lookup (1/2)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.ArrayL R

St.Scu.ResizingArray B St.C.Array (→ R, L)
Lookup fails in both R and then L

MODULARITY 2016 HPI / TiTech March 16, 2016 20 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Example: Relative Name Lookup (1/2)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array

L R

St.Scu ¬{=,B, ,B } St.C (→ L)
Lookup succeeds in L

MODULARITY 2016 HPI / TiTech March 16, 2016 20 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Example: Relative Name Lookup (2/2)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

LR

St.QC.Array St.C.Array (→ R, L)
Lookup fails in both R and then L

MODULARITY 2016 HPI / TiTech March 16, 2016 21 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Example: Relative Name Lookup (2/2)

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

LR

St.QC B St.C (→ R, L)
Lookup succeeds in R

MODULARITY 2016 HPI / TiTech March 16, 2016 21 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Class Nesting Details

• Lookup mechanism is similar to Java, differs from Newspeak
(lookup in self class, then superclasses, then enclosing class and
superclasses, etc.)

• Nested classes are virtual and can be overridden
• Lookup mechanism looks up methods and nested classes (and
parameters)

• extends supports arbitrary expressions
• Overwritten and original nested classes do not have to be in a
subclass/subtype relationship (c.f. Jx, gbeta)

MODULARITY 2016 HPI / TiTech March 16, 2016 22 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Class Parameterization (1/2)

• Must provide argument to obtain concrete class object
• Different class object for every instantiation (c.f. C++ templates)
• Access parameter value via message send to class object
• Same name lookup mechanism
• Name lookup precedence (→ shadowing)

1. Method in r
2. Parameter in r
3. Class in r
4. Method in l
5. Parameter in l
6. Class in l

MODULARITY 2016 HPI / TiTech March 16, 2016 23 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIMechanism

Class Paramterization (2/2)

Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

Smalltalk

Collection(Algorithm)

Array

sort(...) void sort(...) {
 result = scope.Algorithm.Sorting.sort(...)
 ...
}

QuickAlgorithm

Algorithm

Sorting

sort(...)

MODULARITY 2016 HPI / TiTech March 16, 2016 24 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Overview

Introduction

Requirements

Mechanism

Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 25 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Versioning
Smalltalk

SpaceCleanup

v1

v1

v2
extends Smalltalk.Matriona.Version

extends Smalltalk.Matriona.Version

extends Smalltalk.Matriona.Versioning

Morphic

Morphic

v2

return Smalltalk
 .Morphic.v3.v1;

return Smalltalk
 .Morphic.v4
 .>=<=(2, 4);

Level
extends scope.Morphic.Morph
...

...

• Convenience
methods: <, <=, >,
>=, <>, <=>, <>=,
<=>=, latest

• Name lookup finds
classes, parameters,
and methods

• Morphic is an import

MODULARITY 2016 HPI / TiTech March 16, 2016 26 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

External Configuration (1/2)

Smalltalk

SpaceCleanup(Morphic)

Tile

Item

Player

Monster

extends scope.Morphic.Morph

extends scope.Morphic.Morph

extends scope.Item

extends scope.Item

• Decouple
implementation from
dependencies

• Morphic parameter
should implement
Morphic interface

MODULARITY 2016 HPI / TiTech March 16, 2016 27 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

External Configuration (2/2)

class Smalltalk {
class SpaceCleanup<Morphic implements Smalltalk.Morphic.Interface> {
class Tile extends scope.Morphic.Morph {
class Item extends scope.Morphic.Morph { /* ... */ }
class Player extends scope.Item { /* ... */ }
class Monster extends scope.Item { /* ... */ }

}

static void run() { /* ... */ }
}

}

Smalltalk.SpaceCleanup<Smalltalk.NativeRendering>.run();

MODULARITY 2016 HPI / TiTech March 16, 2016 28 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Inheritance

• Task: Design variants of Space Cleanup, where . . .
− the speed of the game can be adjusted

(overwrite Level»stepTime)
− items can deal damage (add methods to all items)

Space Cleanup

Level Item ...

Speed Cleanup

Level Item ...
+

• Design Constraints: Apply changes to the original application
automatically, leave the original application intact

MODULARITY 2016 HPI / TiTech March 16, 2016 29 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Inheritance: Speedy Space Cleanup

class Smalltalk {
class SpaceCleanup {
Level currentLevel;
class Level { /* ... */ }

}

class SpeedySpaceCleanup extends scope.SpaceCleanup {
@Override class Level extends super.Level {
int stepTime;
@Override int stepTime() { return stepTime; }

}

void setSpeed(int stepTime) {
currentLevel.stepTime = stepTime;

}
}

}

MODULARITY 2016 HPI / TiTech March 16, 2016 30 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Inheritance: Damage Space Cleanup (1/3)

Smalltalk

SpaceCleanup

Tile

Item

Player
extends scope.Item

Monster
extends scope.Item

extends Smalltalk
 .Morphic.Morph

• Damage functionality should be
implemented in items

• Need to define subclasses of
Item and Monster

• Monsterdmg should inherit from
both Monster and Itemdmg

MODULARITY 2016 HPI / TiTech March 16, 2016 31 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Inheritance: Damage Space Cleanup (2/3)
Smalltalk

SpaceCleanup

Tile

Item

Player
extends scope.Item

Monster
extends scope.Item

extends Smalltalk.Morphic.Morph

DamageSpaceCleanup

Tile

Item

Player

Monster
extends super.Monster

damage

extends super.Item

damage

extends Smalltalk.SpaceCleanup

extends super.Tile

damage
 ^ { #player -> 0.25.
 #slime -> 0.33 }

damage
 ^ { }

...

MODULARITY 2016 HPI / TiTech March 16, 2016 32 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Module Inheritance: Damage Space Cleanup (3/3)
Smalltalk

SpaceCleanup

Tile

Item

Player
extends scope.Item

Monster
extends scope.Item

extends Smalltalk.Morphic.Morph

DamageSpaceCleanup

Tile

Item

Player

Monster
extends super.Monster

damage

extends super.Item

damage

extends Smalltalk.SpaceCleanup

extends super.Tile

damage
 ^ { #player -> 0.25.
 #slime -> 0.33 }

damage
 ^ { }

...

Resulting superclass hierarchy of Monsterdmg:
1. St.DScu.Tile.Monster[St.Scu.Tile.Monster]
2. St.DScu.Tile.Item
3. St.DScu.Tile.Item[St.Scu.Tile.Item]
4. St.Morphic.Morph

MODULARITY 2016 HPI / TiTech March 16, 2016 33 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkI Examples

Generalization: More than 2 Hierarchies

...

A

X

B

extends super.X

C

X X

Y Y Y

Z Z Z

extends super.X

extends super.Yextends super.Y

extends super.Z extends super.Z

extends X

extends Y

• Effectively implements multiple inheritance
• Related work: Mixin layers

MODULARITY 2016 HPI / TiTech March 16, 2016 34 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIConclusion

Overview

Introduction

Requirements

Mechanism

Examples

Conclusion

MODULARITY 2016 HPI / TiTech March 16, 2016 35 / 36

Matriona: Class Nesting with Parameterization in Squeak/SmalltalkIConclusion

Conclusion

• Vision for Matriona: support long-living systems, multiple
applications in one execution environment, exploratory programming,
modularity (composability, decomposability, understandability)

• Techniques: Module versioning, module inheritance, external
configuration

• First steps: A module system that . . .
− hosts modules in various versions

(→ composability, long-living systems)
− makes it easy to design module variants

(→ exploratory programming, decomposability)
• Next steps:

− Migration of running applications (state/object migration)
− Class extensions (backward compatibility)1
− Method/class visibility (modular protection)

1LASSY workshop: Hierarchical Layer-based Class Extensions in Squeak/Smalltalk
MODULARITY 2016 HPI / TiTech March 16, 2016 36 / 36

	Introduction
	Requirements
	Mechanism
	Examples
	Conclusion

