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“Explain Details of the DynaSOAr 
Algorithm”
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Heap Layout
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1. Select active[T] block for allocation.
Initialize a new active[T] block if none found.

2. Reserve object slot in selected block.
3. Update block state bitmaps (indices).

Object Allocation
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Walk through 
allocation with two 
concurrent threads.
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① Object Allocation by Example

7



② Object Allocation by Example
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③ Object Allocation by Example

alloc

Atomic semantics

This block is now full! 
No longer active.

Inconsistency between 
block state index and 

actual block state!
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④ Object Allocation by Example

This block is now full! 
No longer active.
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⑤ Object Allocation by Example

This block is now full! 
No longer active.
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⑥ Object Allocation by Example

FAIL!

This block is now full! 
No longer active.
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⑦ Object Allocation by Example
Retry. Select 
new block.

… but let’s 
focus on the 
other thread.

This block is now full! 
No longer active.
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⑧ Object Allocation by Example

Block is now full!

This block is now full! 
No longer active.

No longer inconsistent.

14



⑨ Object Allocation by Example

Double check if block 
type is still T.

Block could have been 
deleted and reinitialized 
to another type t != T 
before Line 8.

This block is now full! 
No longer active.
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Challenges in Object Allocation
● We use block state bitmaps for finding active blocks, but those bitmaps may 

be (temporarily) inconsistent.
○ Source of truth: Values stored inside block.
○ Bitmaps are only indices and they may not always be correct.
○ Solution: Use bitmaps for finding blocks quickly, then double check by looking at block.
○ Slot reservation is optimistic.

■ Assuming that block state has not changed. Otherwise, we have to rollback.

● Block selection and block reservation together are not atomic.
○ E.g.: Two threads may select the same block with only one free object slot. Only one thread 

can succeed with slot reservation.
○ Assumption in Block::reserve(): Block has at least 1 free object slot and is of type T.
○ This assumption may sometimes be violated, in which case we retry.
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Walk through 
deallocation with one 
thread.
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① Block Deletion by Example
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② Block Deletion by Example

dealloc
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③ Block Deletion by Example

Can I delete this 
block now?
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④ Block Deletion by Example

Can I delete this 
block now?
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⑤ Block Deletion by Example

Can I delete this 
block now?

NO ! 22



Challenges of Object Deallocation
● The basic problem is Safe Memory Reclamation (SMR).

○ A notoriously different problem in lock-free algorithms with lots of literature.
○ Common solutions: Epoch-based reclamation [1], hazard pointers [2].

● DynaSOAr’s approach: Block invalidation
○ Set all object slots to “1”, so that the block appears to be completely full to other threads.
○ Remove block from the active[T] index, so that other threads will no longer find it.
○ Reinitialize object allocation bitmap to all zeros upon block initialization.
○ Although unlikely, some allocating threads may sleep during the above points and resume 

allocation in a newly initialized block of now different type. They can detect such problems by 
checking the type of the block. Rollback if necessary.

○ Crucial design choice: All blocks have the same structure. Same #bytes and object 
allocation bitmaps are always at the same offset, regardless of block type.

[1] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge Computer Laboratory. 2004.
[2] M. Maged. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. In: IEEE Transactions on Parallel and Distributed Systems. 2004.23
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“Compare DynaSOAr with other 
Lock-free Allocators”
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ScatterAlloc [1]
● Super block → Region → 

Page → Chunk
● Chunk size fixed after first

allocation within page.
○ Assumption: Many small same-size

allocations. (Same in DynaSOAr.)

● Page usage table modified with
atomic bit-wise operations.

● Allocation algorithm
○ Select page by hashing (linear probing)

SM ID and allocation size.
○ Skip regions with high fill level.
○ Trade higher fragmentation for faster allocation. (Opposite of DynaSOAr.)

● Deleting a page requires a lock (similar to invalidation in DynaSOAr).

[1] M. Steinberger, et. al. ScatterAlloc: Massively Parallel Dynamic Memory 
Allocation for the GPU. In: InPar 2012.

active super block
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XMalloc [2]
● Memoryblk. → Superblk.

→ Basicblk. → Coal.blk.
● Lock-free free lists for 

empty basicblocks (for 
pre-determined sizes).

(partly) free superblocks

free basicblocks

Allocated basicblock

● Simultaneous alloc. requests of the same warp are combined: Request one 
basicblock and subdivide into coalescingblocks to deliver to threads.

● Unclear how SMR is solved.

[2] X. Huang, et. al. XMalloc: A Scalable Lock-free Dynamic Memory Allocator for Many-core Machines. In: CIT 2010.

using same technique in DynaSOAr
28



FDGMalloc [3]
● Private heaps: One heap per warp. (Similar to Hoard [4].)
● Programming Interface

○ malloc: Allocate memory in private heap.
(Less contention/competition among threads.)

○ No free operation. Can only free an entire
private heap.

○ Efficient memory allocation via 
bump pointer allocation.

○ SMR is trivial (delete everything).

● Not expressive enough for SMMO.

[3] S. Widmer, et. al. Fast Dynamic Memory Allocator for Massively Parallel 
Architectures. In: GPGPU-6.

[4] E. D. Berger, et. al. Hoard: A Scalable Memory Allocator for Multithreaded 
Applications. In: ASPLOS 2000.
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TBuddy/UAlloc [5]
● Large allocations: TBuddy, Small allocations: UAlloc

count #available

● Check semaphore (thread-safe counter)
to see if block available.

● Select block of suitable size and maybe
split a higher-order block.

● Updating the tree requires locking.
hierarchical bitmaps in DynaSOAr are lock-free!

● Arena (per-SM) → Chunk → Bin → Block
● Bitmaps to keep track of chunk/bin usage.
● Alloc.: Find bin in free list. If none, init. from chunk list.
● Chunks are allocated with TBuddy.
● Unclear how SMR is solved.

free lists for
bins of different sizes

bins contain same-size
allocations (blocks)

[5] I. Gelado, M. Garland. Throughput-Oriented GPU Memory Allocation. 
In: PPoPP 2019.
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Conclusion
● Other allocators have a hierarchy of containers (different kind of blocks) to 

find free memory fast. DynaSOAr has a hierarchical index instead!
○ This simplifies the design.

● Other allocators are memory allocators, DynaSOAr is an object allocator.
○ Therefore, they cannot apply data layout optimizations (such as SOA).

● Other allocators trade higher fragmentation for faster (de)allocations. 
DynaSOAr does the opposite!

● W.r.t. lock freedom: All GPU allocators based on atomic operations and 
retry loops. Some allocators use a technique similar to block invalidation.

● Many different designs for CPU allocators. Private heaps are common.
○ E.g.: [6] uses privates heaps, hazard pointers for SMR, blocks states similar to DynaSOAr.

[6] M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. In: PLDI 2004.
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“Explain the Overhead of Ikra-Cpp”
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Overview

● Ikra-Cpp is a data layout DSL for SOA.
○ Combines SOA performance characteristics and notation of object-oriented programming.

● DynaSOAr is an extension of Ikra-Cpp with a dynamic memory allocator.
○ DynaSOAr and Ikra-Cpp have different layouts and different overheads.

● There are two kinds of overhead:
○ Compiler overheads: DSL makes core more complex, compiler fails to optimize.
○ Address computation overhead: DSL does some sort of memory address translation. 

In Ikra-Cpp, this translation is free. In DynaSOAr, it is not free! 33



Data Layout DSL: Example
class Body : public IkraSoaBase<Body> {
 public:
  declare_field_types(Body, float, float, float,
                            float, float, float, float)

  Field<Body, 0> pos_x = 0.0;
  Field<Body, 1> pos_y = 0.0;
  Field<Body, 2> vel_x = 1.0;
  Field<Body, 3> vel_y = 1.0;
  Field<Body, 4> force_x;
  Field<Body, 5> force_y;
  Field<Body, 6> mass;

  void move(float dt) {
    pos_x = pos_x + vel_x * dt;
    pos_y = pos_y + vel_y * dt;
  }
};

Can be used like a normal C++ class:
 

Body* b = new Body();
b->pos_x = 1.5f;
b->vel_x = 0.9f;

34

address translation
(in software/C++ code)

proxy type



Fake Pointers
Body* b = new Body();
printf(“%p\n”, b);   // e.g.: 0x03b8000b01fc0008 -- Not a valid memory address.
printf(“%c\n”, *reinterpret_cast<char*>(b));   // Probably crashes

● Object pointer does not point to an actual memory location (fake pointer), 
but encodes various information that is required for address translation.

● The main job of the data layout DSL is address translation.
○ Implemented entirely in C++.
○ Template metaprogramming: Field<...> classes are proxy types.
○ Operator overloading: Field<...> references (lvalues) can be implicitly converted to base 

type references.

35



Structure/Components of a Fake Pointer

● Object pointers do not point to memory 
addresses. Instead, we encode all 
information that is required for address 
computation/translation.

● Implemented with operator overloading, 
template metaprogramming, macros.

36

● Fields are defined with proxy types.
● Field address computation depends on the runtime type of an object. (Because the runtime type 

determines the object capacity of a block. The runtime type is not statically known.)



Address Computation Overhead: Hand-written SOA

struct SoaStruct {
  float pos_x[kNumObjects];
  float pos_y[kNumObjects];
  float vel_x[kNumObjects];
  float vel_y[kNumObjects];
  float force_x[kNumObjects];
  float force_y[kNumObjects];
  float mass[kNumObjects];
};

__global__ void codegen_test(SoaStruct* soa, int id) {
  soa->pos_y[id] = 1.2345f;
}

MOV R1, c[0x0][0x20];                       
MOV R2, c[0x0][0x148];                      
ISCADD R0.CC, R2.reuse, 
c[0x0][0x140], 0x2; 
SHR R2, R2, 0x1e;                           
IADD.X R2, R2, c[0x0][0x144];               
IADD32I R4.CC, R0, 0x4000000;               
MOV32I R0, 0x3f9e0419;                      
IADD.X R3, RZ, R2;                          
MOV R2, R4;                                
STG.E [R2], R0;
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Address Computation Overhead: DynaSOAr

__global__ void codegen_test(Body* b) {
  b->pos_y_ = 1.2345f;
}

MOV R1, c[0x0][0x20];         
MOV R5, c[0x0][0x140];        
MOV R2, c[0x0][0x144]; 
SHF.R.U64 R0, R5, 0x18, R2;   
LOP32I.AND R0, R0, 0xff000000;
SHR R0, R0, 0x16;        
LOP32I.AND R3, R5, 0xffffffc0;
IADD32I R0, R0, 0x40;         
LOP32I.AND R2, R2, 0xffff;    
LOP32I.AND R5, R5, 0x3f;      
IADD R3.CC, R0.reuse, R3;     
SHR R0, R0, 0x1f;         
IADD.X R0, R0, R2;            
LEA R3.CC, R5.reuse, R3, 0x2; 
LEA.HI.X R0, R5, R0, RZ, 0x2; 
LEA R2.CC, R3.reuse, RZ;      
LEA.HI.X P0, R3, R3, RZ, R0;  
MOV32I R0, 0x3f9e0419;     
ST.E [R2], R0, P0;
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Measuring the Overhead of DynaSOAr’s DSL
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Address Computation Overhead: Ikra-Cpp

__global__ void codegen_test(Body* b) {
  b->pos_y_ = 1.2345f;
}

MOV R1, c[0x0][0x20];        
MOV32I R2, 0x0;              
MOV R0, c[0x0][0x140];      
MOV32I R3, 0x0;              
MOV R5, c[0x0][0x144];       
LEA R2.CC, R0.reuse, R2, 0x2;
LEA.HI.X R3, R0, R3, R5, 0x2;
MOV32I R0, 0x3f9e0419;       
STG.E [R2+0x138b0], R0;

Very similar to hand-written SOA assembly. 
Practically no overhead. For Ikra-Cpp CPU 
mode: Identical assembly code.

40



Measuring the Overhead of Ikra-Cpp’s DSL
● No overhead of Ikra-Cpp 

over hand-written SOA
● CPU: Same assembly 

code generated.
● GPU: Slightly different 

assembly code, but almost 
same performance.

41



Conclusion
● Minimal overhead due to data layout DSL.

○ Ikra-Cpp: No overhead at all → Compiler can generate efficient code.
(But problems with vectorization in mode CPU!)

○ DynaSOAr: Some overhead due to more complex address translation.
■ Overhead is much lower than the benefit of SOA.
■ N-Body is getting a bit faster due to cache associativity issues.

● Address translation is usually done at the compiler/OS/hardware level, but we 
do it in C++ due for engineering reasons.

42



“Discuss Integration with Mainstream 
Parallel Languages such as OpenMP”
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Run-Time vs. Compile-Time Coalescing
● Vectorization on x86: SSE (Streaming SIMD Extensions)
● Generate vector assembly instructions: E.g.: movdqa

C++ Code:
alignas(128) int r[1024];
alignas(128) int a[1024];
alignas(128) int b[1024];

#pragma omp parallel for simd
for (int i = 0; i < 1024; ++i) {
    r[i] = a[i] + b[i];
}

x86 Assembly:
movdqa 0x6020f0(%rax),%xmm0

CUDA Code:
__device__ int r[1024];
__device__ int a[1024];
__device__ int b[1024];

__global__ void kernel() {
    r[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

PTX Assembly:
st.global.u32 [%rd7], %r4;

Compile-time 
coalescing

Run-time 
coalescing

No need to analyze 
access pattern at 

compile time!

44

st.global.u32 …
(covered by 3 vector loads)

Source: 
https://stackoverflow.com/questions/5
6966466/memory-coalescing-vs-vecto
rized-memory-access

https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
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I asked this question on
StackOverflow and it sparked
an interesting discussion…

https://stackoverflow.com/questions/56966466
/memory-coalescing-vs-vectorized-memory-ac
cess

Run-Time vs. Compile-Time Coalescing

https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access


OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N];   float a[N];   float b[N];

void example() {
    #pragma omp parallel for simd
    for (int i = 0; i < N; ++i) {
        r[i] = a[i] + b[i];
    }
}

for loop must be in canonical form!

Note: Compilers with auto-vectorization do almost 
the same thing. (Apart from __restict.)

46

#pragma omp parallel for
for (int i = 0; i < N; i += 8) {
  __m256 vec_a = _mm256_load_ps(&a[i]);
  __m256 vec_b = _mm256_load_ps(&b[i]);
  __m256 vec_r = _mm265_add_ps(vec_a, vec_b);
  _mm256_store_ps(&r[i], vec_r);
}

transform
Can only load consecutive (packed) floats. Otherwise, must 
use different instruction. Compiler must understand the  
memory access pattern!



OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N];   float a[N];   float b[N];

void example() {
    #pragma omp parallel for simd
    for (int i = 0; i < N; ++i) {
        r[i] = func(a[i], b[i]);
    }
}

#pragma omp declare simd
float func(float p1, float p2) {
    return p1 + p2;
}

Functions OK!
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OpenMP SIMD Support
● SIMD-parallel for loops since OpenMP 4.0

float r[N];   float a[N];   float b[N];

void example() {
    #pragma omp parallel for simd
    for (int i = 0; i < N; ++i) {
        r[1 + i - 1] = a[2*i - i] + b[atoi(sqrt(i*i))];
    }
}

OpenMP compiler must be able to 
find SIMD-suitable access pattern!

Note: Pretty sure, it will fail here…
(Yes, this technically, this is not the same as i.)

48

… or here



DynaSOAr parallel_do in OpenMP
● parallel_do<T, &T::func> is a parallel for loop, but it is not in canonical 

form! It is more like a parallel iterator.

● Problem: DynaSOAr object space is not an array.

int main() {
    auto* h_allocator = new AllocatorHandle<AllocatorT>();

    #pragma omp parallel for simd
    for (Body& b : h_allocator->get_objects<Body>()) {
        b.update(/*dt=*/ 0.5f);
    }
} h_allocator->parallel_do<Body, &Body::update>(0.5f);

49



Conclusion
● Could DynaSOAr (parallel_do) be implemented in OpenMP? Yes
● But depends on the compiler to detect SIMD-suitable access patterns.

In practice, it will not work well! (This is a general problem of SIMD.)

template<typename T, void (T::*func)()>
void parallel_do() {
    #pragma omp parallel for
    for (int i = 0; i < h_allocator->get_num_blocks<T>(); ++i) {
        Block<T>* block = h_allocator->get_ith_allocated_block<T>(i);

        #pragma omp parallel for simd
        for (int j = 0; j < 64; ++j) {
            (block->get_ith_object(j)->*func)();
        }
    }
}

thread parallelism

SIMD parallelism

OpenMP is unlikely to generate efficient 
vector code (due to SOA data layout DSL) 50


