
06/25/19 CompactGpu - ACM SRC @ PLDI 2019 1

CompactGpu: Massively Parallel
Memory Defragmentation on GPUs

Matthias Springer
Tokyo Institute of Technology

ACM SRC @ PLDI 2019



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 2

Introduction / Motivation

● Goal: Make GPU programming easier to use.
● Focus: Object-oriented programming on 

GPUs/CUDA.
– Many OOP applications in high-performance 

computing.

– DynaSOAr [1]: Dynamic memory allocator for GPUs.

– CompactGpu: Make allocations more space/runtime 
efficient with memory defragmentation.

[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-
oriented Programming on GPUs with Efficient Memory Access. ECOOP 2019.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 3

Why Defragment GPU Memory?

● Space Efficiency: Reduce overall memory consumption 
(and prevent premature out of memory errors).

● Runtime Efficiency: Accessing compact data requires 
fewer vector transactions and benefits cache utilization.

L1/L2 cache
line size

L1/L2 cache
line size



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 4

GPU Allocation Characteristics

● Massive number of concurrent allocations.
● Most allocations are small and have the same 

size (due to mostly uniform control flow).
● Allows us to optimize defragmentation more 

than on CPUs.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 5

Related Work / State of the Art

● Dynamic GPU Memory Allocation
– Not well supported until recently, so not widely utilized yet.

– Default CUDA allocator (malloc/free): Unoptimized and extremely slow.

– Halloc [2], ScatterAlloc/mallocMC [3]: Fast (de)allocation time, but high 
fragmentation (hashing).

– DynaSOAr: My own allocator, with additional optimizations for 
structured data (objects).

● GPU Memory Defragmentation [4]
– High runtime overhead (up to 50%).

– Different assumptions about allocation pattern.

– Uses a memory allocator for moving allocations in memory.

[4] R. Veldema, M. Phillipsen. Parallel Memory Defragmentation on a GPU. MSPC 2012.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 6

DynaSOAr Heap Layout

Contains 48 objects in Structure 
of Arrays (SOA) data layout



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 7

DynaSOAr Heap Layout

No fragmentation.

GOOD!
No fragmentation.

GOOD!
Contributes to
fragmentation.

BAD!

Contributes to
fragmentation.

BAD!

No fragmentation.

GOOD!
No fragmentation.

GOOD!



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 8

Block Merging: 1 + 1 = 1

Take 2 blocksTake 2 blocks

≤ 50% full≤ 50% full ≤ 50% full≤ 50% full
Do this
in parallel
for all
eligible
blocks:



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 9

Block Merging: 1 + 2 = 2

Take 2 blocksTake 2 blocks

Do this
in parallel
for all
eligible
blocks:

≤ 66% full≤ 66% full

still ≤ 66% fullstill ≤ 66% full

≤ 66% full≤ 66% full

need multiple
passes

need multiple
passes

≤ 66% full≤ 66% full



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 10

Block Merging: 1 + n = n

● Higher n: Better defragmentation guarantees.
● Lower n: A bit faster, fewer passes.
● n is can be configured by the programmer.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 11

Pointer Rewriting

● Rewrite pointers to objects that were moved.
● Basic Ideas:

– Store forwarding pointers in source blocks.

– Allocator has knowledge about the structure (fields, 
classes) of the data it is allocating. No need to 
scan the entire heap.

– Quickly decide if a pointer must be rewritten with 
bitmaps that fit in the L2 cache.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 12

Benchmark Results: n-body
red line:

no defrag

red line:
no defrag

This benchmark:
Defragmentation is about 0.5%
of the the total running time.



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 13

Conclusion

● Efficient memory defragmentation is feasible on GPUs.
● Besides saving memory, defragmentation makes usage 

of allocated memory more efficient: Better cache 
utilization and better vectorized access.

● GPU allocation patterns allow us to implement 
defragmentation very efficiently.
– Choosing source/target blocks: Parallel prefix sum.

– Copying objects: Very efficient due to SOA layout.

– Rewriting pointers: Fast due to many optimizations that reduce 
#memory accesses (bitmaps, restricting heap scan areas).



06/25/19 CompactGpu - ACM SRC @ PLDI 2019 14

References

[1] M. Springer, H. Masuhara. DynaSOAr: A Parallel Memory Allocator for Object-
oriented Programming on GPUs with Efficient Memory Access. ECOOP 2019.

[2] A. V. Adinetz and D. Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator 
for GPGPU Architectures. GPU Technology Conference 2014.

[3] M. Steinberger, M. Kenzel, B. Kainz, D. Schmalstieg. ScatterAlloc: Massively Parallel 
Dynamic Memory Allocation for the GPU. InPar 2012.

[4] R. Veldema, M. Phillipsen. Parallel Memory Defragmentation on a GPU. MSPC 2012.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

