
Solving Satisfiability with Ant Colony
Optimization and Genetic Algorithms

Dominik Moritz and Matthias Springer
{firstname.lastname}@student.hpi.uni-potsdam.de

University of Potsdam, Institute for Computer Science

Abstract. In this paper, we present our implementation of a SAT solver
that uses a genetic algorithm and an ant colony algorithm. We show how
we significantly increased the performance of these algorithms using pre-
processing steps like factorization and using optimizations for escaping
from local optima. The genetic algorithm achieves this by forcing vari-
ables and triggering catastrophes. The ant colony algorithm uses a most
constrained variable heuristic and blurs pheromones values. Finally, we
evaluate the overall performance of our implementation.

1 SATISFIABILTY solvers

The boolean satisfiability problem or SAT, is the problem of finding an assignment
for variables that satisfy a boolean formula. In other words, with the assignment
the formula evaluates to true.

The SAT problem was the first known example of an NP-complete prob-
lem [2]. It is widely believed (but not yet proven) that no algorithm exists that
solves all instances of SAT deterministically in polynomial time. There exists
a large number of practical problems that are NP-complete such as planning,
hardware verification or theorem proving. All problems in NP can be reduced
to SAT or to any other NP-complete problem in polynomial time. Solving just
one NP-complete problem efficiently solves all problems in NP efficiently. There-
fore, NP-complete problems and SAT in particular are among the most relevant
problems in computer science.

Even though there currently exists no SAT solver that can solve all instances
efficiently, a variety of algorithms have been developed. The first class of al-
gorithms are conflict-driven clause learning (CDCL) algorithms, which extend
the idea of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5]. These
algorithms are complete algorithms, which means that they, given enough time,
are guaranteed to find a solution. The second class of algorithms are stochastic
optimization algorithms. These incomplete algorithms cannot guarantee to find
a solution but may find a solution faster than a complete algorithm. In this pa-
per, we will show how genetic algorithms and ant colony algorithms can be used
to solve SAT instances. What all algorithms have in common is that they ex-
plore the search space of possible assignments, gradually improving the solution
and eventually hitting an assignment that makes the problem evaluate to true.

2

However, due to the nature of these algorithms, there is no guarantee that the
algorithms will find a solution even though it may exist.

2 Previous work

Dorigo proposed ant colony optimization as a metaheuristic for solving a wide
set problems [6]. A metaheuristic is an abstract algorithm that describes the
steps that need to be carried out for all problems, such as deciding whether to
accept a solution candidate. MAX-MIN Ant System [13] and Ant Colony Sys-
tem [7] are among the first implementations for solving the Traveling Salesman
Problem. Sethuram and Parashar described how to solve SAT for the design of
VLSI circuits using ant colony optimization [12]. Villagra and Baran described
optimizations like stepwise adaptation of weights for clauses and refining func-
tions [14].

There is a high number of publications about the application of evolutionary
algorithms to the SAT problem such as [10][9]. O. P. Cruz and A. Cruz sum-
marized different selection and mutation schemes for genetic algorithms [3]. H.
Ellerweg has published a study of different selection and mutation strategies [1].

3 Formats and data structures

In this section, we describe the data structures that are used in both the genetic
algorithm and the ant colony optimization algorithm.

3.1 Boolean formulas in conjunctive normal form

A formula in conjunctive normal form (CNF) consists of a set of clauses. To
satisfy the formula, every clause must be satisfied, i.e. every clause must have at
least one literal that is satisfied.

In the DIMACS format, every clause is represented as a set of signed integers.
A negative value represents a negated variable. For instance, 1 -5 4 stands for
the clause x1 ∨ ¬x5 ∨ x4.

We transform clauses into full clauses in order to simplify satisfiability tests.
A full clause for a formula with n variables is a matrix c ∈ Bn×2. The ith column
contains truth values for xi in ci,1 and ¬xi in ci,2. Consequently, ci,1 and ci,2 can
never be true (>) at the same time, but they are both false (⊥) if the variable
is not part of the formula. Figure 1 shows how the DIMACS clause 1 -5 4 is
written as a full clause.

[
> ⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ >

]

Fig. 1. Full clause representation for x1 ∨ ¬x5 ∨ x4 and 5 variables.

3

3.2 Solution candidates

We call a binding for every variable a solution candidate. Only if we know that
the binding satisfies the boolean formula we call it a solution or model.

Solution candidates are typically represented as an enumeration of truth
values. For instance, [>,⊥,⊥,>,>] denotes the solution candidate {x1,¬x2,¬x3,
x4, x5}.

Before we test if a solution candidate satisfies a formula, we transform it
into a full candidate, similar to the full clauses described in Section 3.1. A full
candidate is a matrix s ∈ Bn×2. The ith column contains truth values for xi in
ci,1 and ¬xi in ci,2. Consequently, either si,1 xor si,2 must be true, since the
variable must be either satisfied or unsatisfied. Figure 2 shows an example for a
full solution candidate.

[
> ⊥ ⊥ > >
⊥ > > ⊥ ⊥

]

Fig. 2. Full solution candidate representation for {x1,¬x2,¬x3, x4, x5}.

3.3 Evaluating a solution candidate

Testing if a solution candidate satisfies a formula is done very often in all our
algorithms. Therefore, this step must be performed quickly.

Formulas are represented as a list of full clauses. Effectively, a formula is a
matrix f ∈ Bm×n×2, where m is the number of clauses and n is the number of
variables. To test a solution candidate c, we calculate fi ∧ c bitwise for every
1 ≤ i ≤ m (for every clause). c satisfies f iff every resulting matrix contains at
least one > value. Figure 3 shows how a full candidate is tested efficiently with
NumPy.

1 def evaluate_full_candidate(f, c):

2 return np.any(f & c, axis=(2, 1))

Fig. 3. Evaluation of full candidate with NumPy

4 Preprocessing and Optimizations

In this chapter, we discuss preprocessing and optimization techniques that can
speed up the algorithms presented in the next chapters. We will take take a look
at how to support multiprocessor systems.

4

4.1 Removing clauses and unconstrained variables

Before an instance is passed to an algorithm, unconstrained variables, i.e. vari-
ables that are not used in any clause, are removed. Furthermore, clauses with
only one literal are removed because it is obvious how to assign the variable.
All other clauses that contain this variable can be simplified, too. If the vari-
able in the clause has the same sign (positive or negated) we remove the whole
clause because it is now satisfied. Otherwise, we simply remove the variable from
the clause. An instance is unsatisfiable if we end up with an empty clause. An
instance is satisfiable if we end up with no clauses.

4.2 Configuration Profiles

The performance of the algorithms discussed in the next chapter heavily relies on
the choice of certain parameters such as the seed value for random numbers. We
found out that there are some good parameter combinations that perform well
on certain instances. However, the same parameters combinations may perform
badly with different instances. We call a set of parameters a profile.

To gain advantage of multiprocessor systems and to be able to solve different
types of instances fast, the same instance can be processed with different profiles
simultaneously. Therefore, the program spawns a user-defined number of worker
processes. All processes are terminated as soon as the first process returns with
a solution.

4.3 Factoring variables

Generating new instances with a set of variable assignment assumptions is an
alternative to spawning new processes based on configuration profiles. Factoring
an instance by the variable xi generates two factored instances with the addi-
tional clauses xi and ¬xi respectively1. Each factored instance is preprocessed
and then run in a separate worker process. The original solution is unsatisfiable
if both factored instances are found unsatisfiable during preprocessing.

Factored instances can again be factored by another variable. The total num-
ber of factored instances grows exponentially with the number of factorings.
Therefore, if c is the number of processing units, we should not factor by more
than log2 c variables.

We always factor by the most constrained variable, i.e. the variable that
appears in the highest number of clauses. Our implementation combines con-
figuration profiles and factoring variables. All factored instances are run with
the default profile. If the user has chosen to use more processes than factored
instances were generated, random factored instances are run with random pro-
files. If a process stopped because the maximum iterations limit was reached, a

1 Factoring a variable is equivalent to the splitting step of the Davis-Putnam algo-
rithm.

5

factored instance is chosen round robin and run with a random profile and more
iterations2.

5 Genetic Algorithm

Darwin’s evolutionary theory of natural selection proposed in The Origin of
Species[4] states that variability in a natural population as a result of mutation
and new, sexually produced gene combinations help a population evolve and
assure its survival. Genetic algorithms [8] or GAs mimic evolution and due to
their robustness they are used in a wide variety of applications.

When implementing a genetic algorithm, we should try to build an algorithm
that converges quickly while preserving an acceptable genetic diversity. The sec-
ond property is very important for the SAT problem because a solution that
satisfies all clauses but one is not necessarily similar to a solution that satisfies
all clauses.

Whether a solution is found or not largely depends on the appropriate set-
tings especially of the population size, selection and mutation rate. Consequently,
using profiles where the combination of parameters can be coordinated as dis-
cussed in 4.3 significantly improves the performance of a GA.

5.1 Biological background and terms

An individual consists of cells that have the same set of chromosomes. A chro-
mosome is an organized structure of DNA which encodes a model of the whole
organism and is composed of genes, each of which encodes a specific trait. All
chromosomes together form the genome. Individuals together form a popula-
tion which reproduces. During this process, genomes of several individuals are
recombined. This process is called crossover. The new individual’s genome, or
offspring, is not the exact recombination of the parent’s genomes but slightly
different. The process that changes the genome is called mutation and is caused
by errors during the crossover. Some individuals die, some survive and perform
poorly, and others perform better and have a smaller likelihood of dying. This
performance is called fitness.

5.2 Basic algorithm and genetic operators

Figure 4 shows the basic algorithm that we use in our implementation. How-
ever, keep in mind that our implementation is modified in a way that allows
customization (e.g. profiles) and has code optimizations.

The fitnesses of the newly created offspring is recalculated in each itera-
tion. The fitness function calculates the number of satisfied clauses, as described
in Section 3.3. In the selection step, the algorithm can either choose from all

2 The program does not terminate if the instance is unsatisfiable, unless detected
during preprocessing.

6

1 def run():

2 population = generate_polpulation()

3 while True:

4 selection = get_selection(population)

5 offspring = create_offspring(selection)

6 mutate_offspring(offspring)

7 # overwrite chromosomes in population but

8 # do not overwrite elites

9 replace_no_elites(population, offspring)

10 fitnesses = calculate_fitnesses(population)

11 if num_clauses in self.fitnesses:

12 return best(population, fitnesses)

13 def create_offspring(selection):

14 offspring = []

15 for parents in selection:

16 offspring.append(crossover(parents))

17 for _ in range(parameters[’Random offspring’]):

18 offspring.append(random_chromosome())

19 return offspring

Fig. 4. Basic genetic algorithm

non-elites randomly or with a probability that correlates to the fitness of the
chromosomes. The second way of selecting chromosomes for forming offspring
leads to faster convergence but may reduce diversity. We use one point crossover
to breed offspring from the selection. Elites are a fixed number of chromosomes
with the best performance.

5.3 Parameters

Adjusting the parameters for the different algorithms can dramatically change
the performance and behavior, as we will see in Section 7.

– Population size: The number of individuals in a population at any given
time. The higher the number, the more variability is possible. However, a
larger population increases the computation time of every iteration.

– Selection rate: Share of the population that is selected for breeding offspring.
We use roulette-wheel selection or random selection.

– Mutation Rate: The probability under which mutation is applied to the geno-
type of an offspring individual.

– Forced chromosomes: Number of chromosomes where missing clauses are
forced to become true. See Section 5.6.

– Seeded chromosomes: Number of chromosomes that are created with a sim-
ulated annealing algorithm [11] with a better performance than the average
chromosome.

7

– Random offspring: Number of offspring chromosomes that are created at
random instead of by crossover.

– Select with probability: Selection can be done randomly or with a probability
that corresponds to the individual’s fitness. Selecting randomly is much faster
but the algorithm converges slower.

5.4 The fitness dilemma

The fitness of a chromosome guides the search in the genetic algorithms. It
decides which chromosomes survive or which are selected for crossover. However,
especially for the SAT problem it cannot be guaranteed that an increase of fitness
leads to a, or sometimes the only, solution. We will discuss the effects of this
problem in Section 5.5 and in Section 7.4.

5.5 Genetic algorithm optimizations

In this section, we cover three possible optimizations that either improve the
convergence-diversity ratio or increase the algorithm’s performance by adding
knowledge about the problem to algorithm.

Increasing diversity by adding new offspring randomly. This technique adds ran-
dom chromosomes to the population in every single iteration. Even though this
may sound like a good idea, it does actually decrease the performance in the
case of SAT because these new chromosomes are generally too bad compared to
the average chromosome and are replaced too quickly.

Avoiding premature convergence with catastrophes. A way to avoid premature
convergence and reduced diversity are catastrophes that replace large parts of
the population with random chromosomes. A catastrophe either happens after
a certain number of iterations or when the diversity becomes too low. We define
the diversity of a population as the standard deviation. This optimization yields
very good results for some of the SAT problems. Figure 5 shows how catastrophes
affect the distribution of chromosome performance. In a catastrophe (at about
140, 240 and 340 iterations), the non-elite part of the population is replaced
by random chromosomes which increases the diversity but does not affect the
performance of the best chromosome.

5.6 Future work

Possible optimizations that we considered but have not yet implemented include
selection of mutated genes based on previous mutations of the same chromosome
or based on the effect it would have on the individual’s performance. Also, other
crossover strategies such as uniform crossover could be tested.

8

160

165

170

175

180

185

190

195

200

#
 o

f
sa

ti
sf

ie
d
 c

la
u
se

s

best performance
average performance

0 100 200 300 400
iteration

1
2
3
4
5
6
7
8
9

10

st
a
n
d
a
rd

 d
e
v
ia

ti
o
n

Fig. 5. Chromosome performance, affected by catastrophes. The color map shows how
many chromosomes with a certain performance exist.

Forcing clauses to become satisfiable. The algorithm can be configured to make
a number of unsatisfied clauses true by inverting one literal from the clause. This
optimization was introduced when we noticed that the GA often fails to satisfy
the last clause because it has no knowledge about the problem. This optimization
increases the performance of the GA for some problems significantly.

6 Ant Colony Optimization

In this section, we present our implementation of the ant colony optimization
algorithm. Villagra and Baran suggested to use adaptive fitness functions in order
to evade local optima [14]. We adopted their idea of clause weight adaption and
added the concept of blurring pheromones, that we present in chapter 6.5.

6.1 Finding shortest paths with pheromone trails

Ant colony optimization simulates the natural behavior of multiple ants that try
to find a short path from the anthill to a place where food was found. On their
way back to the anthill, ants produce pheromones that evaporate after some
time. On their way to the food and back to the anthill, ants take paths that

9

contain a high quantity of pheromones with a high probability. However, they
still take paths with fewer or no pheromones with a low probability, in order to
find a shorter path.

An ant can take a shorter path in a shorter period of time. Therefore, when
an ant heads for the food a second time, the quantity of pheromones on this
path is still higher than the quantity of pheromones on a longer path, because
a higher quantity of pheromones already evaporated on the longer path. In the
end, short trails tend to have a greater quantity of pheromones present.

The quantity of pheromones increases more the more ants take that path.
However, when a lot of ants initially take a longer path, the colony might be
trapped and unable to find a shorter path, because the long path already has a
high quantity of pheromones present.

6.2 Finding proper variable assignments with pheromone values

We now adapt the concept of pheromone trails for finding shortest paths to
finding variable assignments that maximize the number of satisfied clauses. For
each variable xi, 1 ≤ i ≤ n we maintain two pheromone values phxi and ph¬xi .

A run of the ant colony optimization algorithm consists of several iterations.
In each iteration, a number of ants is simulated subsequently. Every ant generates
a solution candidate by choosing n literals. Let L be the set of all literals with
|L| = 2n. A literal l ∈ L is chosen with a probability of prob(l).

prob(l) =
phl∑

m∈L phm

Fig. 6. Probability for choosing a literal l.

To simulate the evaporation of pheromones, we reduce all pheromones by
a constant percentage. Afterwards, we evaluate the quality of every solution
generated in the current iteration, i.e. the number of satisfied clauses per solution
candidate. Then we update the pheromone values based on the best solution
candidate by adding the number of solved clauses to the pheromone value for
every literal that was chosen. For instance, if the best solution {x1,¬x2,¬x3}
satisfied five clauses we add 5 to phx1

, ph¬x2
and ph¬x3

.

6.3 Most constrained variables heuristic

The idea of the MCV (most constrained variable) heuristic is that more con-
strained variables are more important than less constrained variables because a
highly constrained variable can satisfy a lot of clauses all at once. Therefore, we
change the probability function for choosing literals as follows.

Figure 8 shows the modified probability function. cstr l is the constrainedness
of the variable of literal l, i.e. the number of clauses that contain the variable of

10

1 pheromones = [PH_MAX] * l

2 def run():

3 while True:

4 best_literals, best_evaluation = None

5 for a in range(NUM_ANT):

6 literals = choose_literals()

7 evaluation = evaluate_solution(literals)

8 if evaluation == NUM_CLAUSES:

9 # found solution

10 return literals

11 elif evaluation > best_evaluation:

12 best_literals, best_evaluation = literals, evaluation

13 update_pheromones(best_literals, best_evaluation)

14 def choose_literals():

15 # choose NUM_VAR from all literals,

16 # each with probability pheromones[literal]

17 def evaluate_solution(literals):

18 return np.sum(evaluate_candidate(chosen))

19 def update_pheromones(best_literals, best_evaluation):

20 pheromones[best_literals] += best_evaluation

Fig. 7. Basic ant colony optimization algorithm

l. α and β are exponential factors that control the influence of the pheromones
and the MCV heuristic3.

6.4 Weight adaptation heuristic

The idea of the weight adaption heuristic is to make clauses, that turned out
to be hard to solve, more important during evaluation. From time to time4,

3 These factors are called EXP PH and EXP MCV in the Python code.
4 In the Python code, WEIGHT ADAPTION DURATION is the number of evaluations until

clause weights are changed.

prob(l) =
phαl · cstrβl∑

m∈L phαm · cstrβm

Fig. 8. Probability for choosing a literal l with MCV heuristic.

11

we examine all unsatisfied clauses during evaluation and increase their clause
weight. Initially, all clauses have the same clause weight.

1 def evaluate_solution(literals):

2 candidate_counter += 1

3 solved_clauses = evaluate_candidate(chosen)

4 num_solved_clauses = np.sum(solved_clauses)

5 evaluation = np.sum(solved_clauses * clause_weights)

6 if candidate_counter == WEIGHT_ADAPTION_DURATION:

7 clause_weights += ~solved_clauses

8 candidate_counter = 0

9 return evaluation, num_solved_clauses

Fig. 9. Evaluation of solution candidates with weight adaption heuristic.

Figure 6.4 shows how we changed the evaluation function. We now return
two values, the quality of the solution candidate (evaluation) and the number
of solved clauses (to check if we found a solution). The quality of the solution
candidate is sum of all weights of solved clauses. For instance, if a clause has a
weight value of 5 and it was solved then this clause contributes 5 to the quality
value. In line 7, we increase the weight of all unsatisfied clauses by 1.

6.5 Blurring pheromones

The idea behind simulated annealing [11] is to accept worse solution candidates
with a probability that decreases with the number of iterations, in order to escape
from local optima. For the same reason, our implementation of the ant colony
optimization algorithms blurs pheromone values. To each pheromone value ph l

the value r ·ph l is added, where r is a random number with −max < r < max . In
contrast to simulated annealing, we do not accept or reject certain solutions but
add random changes to solution candidates. As Figure 10 shows, max decreases
with each iteration. This is similar to the cooling process of simulated annealing
that lowers the temperature slowly.

max (i) = b · e
−i
d

Fig. 10. Maximum blurring during iteration i with base value b and decline value d.

12

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

m
ax

iteration

0.9 * exp(-x/50)

(a) Base value 0.9, decline value 50

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

m
ax

iteration

0.5 * exp(-x/150)

(b) Base value 0.5, decline value 150

Fig. 11. max with two different configurations. In the first iteration, max is the base
value. Then max decreases. Lower decline values cause max to decrease faster.

In our test cases, blurring was also effective when it was not used after every
iteration but only from time to time5.

7 Benchmarks

We ran all benchmarks on a desktop computer with an Intel Core i5 750 pro-
cessor6 and 8GB main memory. We used Ubuntu 12.047 and Python 2.7.3 with
NumPy 1.7.0 and Bottleneck 0.6.0.

We used a seed value for the random number generator to ensure that the
results are reproducible. Some of the benchmarks use more than one process.
Each process has its own random number generator. Therefore, the generation
of random number does not depend on process scheduling and is reproducible.

7.1 Overall performance

Figure 12 shows the overall performance of the ant colony optimization algorithm
and the genetic algorithm. We ran both algorithms with different number of fac-
torings and numbers of processes combinations. Algorithm-specific parameters
like number of ants were chosen automatically by the algorithm.

Overall performance. For most parameter combinations, the ant colony opti-
mization algorithm is faster than the genetic algorithm.

5 In the Python code, BLUR ITERATIONS is the number of iterations until the
pheromones are blurred.

6 4 cores, 2.67GHz each, no hyperthreading
7 Kernel version 3.2.0-31.

13

1 2 3 4 5 6 7 8 9 10

number of threads

0

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

fa
ct

o
ri

n
g
s

1

1.5

2

2.5

3

4

5

6

8

10

12.5

15

25

ru
n
ti

m
e
 (

se
co

n
d
s)

(a) Ant colony optimization algorithm.

1 2 3 4 5 6 7 8 9 10

number of threads

0

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

fa
ct

o
ri

n
g
s

2e-01

5e-01

1

1.5
2

3

5

10

200
250
350
500
650

ru
n
ti

m
e
 (

se
co

n
d
s)

(b) Genetic algorithm.

Fig. 12. Runtime for random ksat11.dimacs with different number of factorings and
number of processes combinations. All runtime values for the genetic algorithm are
limited 700 seconds, i.e. some parameter combinations took more time but are shown
as 700 seconds. Runtime values are the arithmetic average of 3 runs.

More factored instances than CPU cores. The number of factored instances
grows exponentially with the number of factorings. Nevertheless, the overall
performance can sometimes be increased with a high number of factorings, even
if more factored instances are generated than processing units are available. For
instance, the ant colony optimization with 8 factorings generates 256 factored
instances of which 242 instances are found unsatisfiable during preprocessing.
The remaining 14 instances were run simultaneously on a computer with four
CPU cores. Due to the preprocessing, these 14 instances could be solved faster
than 4 unfactored instances that were run simultaneously with different profiles
(4 processes, no factorings).

Factoring anomalies. Both algorithms show runtime anomalies at certain fac-
toring numbers. The ant colony optimization algorithm performs badly with 4
factored instances, while performing much better with fewer or more factored in-
stances. Similarly, the genetic algorithm performs badly with 1, 2, 4 or 5 factored
instances. In general, we expect the runtime to double with every additional fac-
toring if no factored instances are found unsatisfiable and more factored instances
were generated than processing units are available. In our test environment, this
is the case when changing from 2 factorings to 3 factorings (ant algorithm).
However, the runtime for the ant colony optimization algorithm increases by a
factor of 8. It seems that the generated factored instances showing the anomaly
are harder to solve than the original instance. Therefore, we have to keep in
mind that additional factorings can also worsen the performance significantly.

Time spent on preprocessing. We expect that the time spent on preprocess-
ing increases exponentially with the number of factorings because the number
of factored instances increases exponentially with the number of factorings. In

14

0.2 0.5 1.0 50 2502000 1 25 100 0.1 0.5 1.0 25 150 250 0.150.25 0.5 10 100 250
parameter values

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

ru
n
ti

m
e
 (

se
co

n
d
s)

BLUR_BASIC

BLUR_DECLINE

BLUR_ITERATIONS

EXP_MCV

NUM_ANTS

PH_REDUCE_FACTOR

WEIGHT_ADAPTION_DURATION

Fig. 13. Performance of the ant colony optimization algorithm with different param-
eter combinations for random ksat11.dimacs. Each bar shows the geometric average
runtime of 36 = 729 runs with a single fixed parameter and all possible combinations
of the remaining shown parameter values (3 per parameter). The small line on top
of each bar shows the standard deviation, divided by 10. Runs were aborted after 45
seconds (accounted for 45 seconds). The parameter values are mostly based on findings
in other papers, particularly [14].

contrast, the time spent on running the actual algorithm can decrease if the fac-
tored instances are easier to solve. Beginning with 6 factorings, the time spent
on preprocessing is equal to or greater than the time spent on running the ant
colony optimization algorithm on all factored instances. Therefore, increasing
the number of factorings further cannot speed up the algorithm by more than a
factor of 2 (if the whole runtime is spent on preprocessing). Actually, the overall
performance worsens when increasing the number of factorings further.

7.2 Ant colony optimization parameters

Figure 13 shows the influence of parameters on the ant colony optimization
algorithm’s performance. We did not use preprocessing or factoring for these
benchmarks. For every parameter, we selected 3 different promising values. We
ran the algorithm with every possible parameter combination, resulting in 2187
runs. Every bar shows the geometric average runtime of all runs with the corre-
sponding parameter value.

High standard deviation. All parameter values show a high standard deviation.
We had very slow and very fast runs for all parameter values. For instance,

15

some runs finished after less than 0.5 seconds whereas some runs timed out with
almost the same parameter configuration. Nevertheless, it is obvious that some
parameter configurations perform significantly better on average.

In Section 7.4, we analyze the choice of the seed parameter on the algorithms’
performance. The same results apply to other parameters, too, because every
parameter change triggers a different random number sequence.

0.01 0.1 0.2 0.2 0.4 0.7 100 150 200 0 1 5 0 1 10 0.1 0.2 0.4
parameter values

0

1

2

3

4

5

6

ru
n
ti

m
e
 (

se
co

n
d
s)

ELIRATE
MUTATION_RATE

NUM_CHROMOSOMES

NUM_FORCED

NUM_GOOD_START

SELRATE

Fig. 14. Performance of the genetic algorithm with different parameter combinations
for random ksat3.dimacs. Each bar shows the geometric average runtime of 35 = 243
runs with a single fixed parameter and all possible combinations of the remaining
shown parameter values (3 per parameter). The small line on top of each bar shows
the standard deviation, divided by 10. Runs were aborted after 45 seconds (accounted
for 45 seconds).

Influence of parameters. The number of ants per iteration has the greatest in-
fluence on the runtime, because by simulating more ants more solutions are
generated and evaluated. For every iteration, the solution candidate of the best
ant is used for updating pheromone values and probabilities. The other solution
candidates are rejected. Therefore, we should keep the number of ants small to
guarantee a fast progress of the algorithm.

It is interesting that the base value and the decline value for blurring pheromones
have little effect on the performance of the algorithm. However, the choice of the
blurring frequency (number of iterations between blurrings) is important.

We are surprised that the pheromone reduce factor has such little influence
on the algorithm’s performance. We expected it to have much more influence

16

on the algorithm’s performance than the parameters for blurring pheromones
because it controls the evaporation of pheromones in every iteration. Blurring
only takes place during some iterations and in most test runs – when the basic
value was 0.2 or 0.5 – the average blurring factor is smaller than a pheromone
reduce factor of 0.25 or 0.5.

The exponential factor for the most constrained variable heuristic and the
weight adaption parameter are also crucial.

7.3 Genetic algorithm parameters

Figure 14 shows the influence of parameters on the genetic algorithm’s perfor-
mance. The way the figures have been calculated is the same process used in
Section 7.2.

We can see that that the number of forced clauses and the mutation rate are
the most important parameters for the benchmarked instance.

50 60 70 80 90
seed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
ti

m
e
 (

se
co

n
d
s)

(a) Ant colony optimization algorithm.

50 60 70 80 90
seed

0

2

4

6

8

10

12

14

ru
n
ti

m
e
 (

se
co

n
d
s)

(b) Genetic algorithm.

Fig. 15. Runtime for random ksat3.dimacs with 50 different seed values.

7.4 Seed sensitivity

We examined how much the performance of an algorithm changes depending on
the value of the random seed. As can be seen in Figure 15, the ant colony algo-
rithms shows little reaction to varying seeds but the GA’s performance depends
heavily on the choice of the seed.

A high difference in the runtimes depending on the seed should generally
be avoided since it is an indication of premature convergence. Because of that,
as discussed in Section 5.5, we applied measures to avoid this behavior. As
can be seen in Figure 16, changing the mutation rate does not significantly
affect how much the performance depends on the seed. A relatively low selection
rate however, has a positive effect on the robustness of the algorithm. Another

17

measure that we used to increase the robustness of the genetic algorithm are
catastrophes. This optimization even benefits from a high convergence.

0

1

2

3

4

5

6

st
a
n
d
a
rd

 d
e
v
ia

ti
o
n

variable mutation rate
variable selection rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
v
e
ra

g
e

Fig. 16. Effect of changing mutation rate or selection rate on dependency on the seed

8 Conclusion

Ant colony optimization algorithms and genetic algorithms are a convenient
way to show satisfiability for boolean formulas. The algorithms presented in this
paper are, however, unable to show that a formula is unsatisfiable. In this case,
both algorithms will not terminate because they are run again over and over
with different configuration profiles.

Both algorithms are metaheuristics. Therefore, they can easily be applied
to different problems. Only the representation of solution candidates and basic
operations like crossover and fitness evaluation need to be changed.

Besides ant colony optimization and genetic algorithms, other metaheuristics
exist that we did not cover in this paper. For instance, tabu search is a simple
algorithm that maintains a list of recently seen solution candidates or elementary
changes that led to them. Another example is simulated annealing which is not
a population-based algorithm and maintains only one solution candidate at a
time.

Further research needs to done to find out how different algorithms perform
in comparison to each other. Some concepts can probably be combined as we
did with our concept of blurring pheromones in the ant colony optimization
algorithm.

18

References

1. Hans Kleine Büning. A study of evolutionary algorithms for the satisfiability
problem. 2004.

2. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

3. Oscar Pérez Cruz and Alfredo Cruz. Evolutionary sat solver (ess).
4. Charles Darwin. On the origin of species. John Murray, 1850.
5. Martin Davis and Hilary Putnam. A computing procedure for quantification the-

ory. J. ACM, 7(3):201–215, July 1960.
6. M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politec-

nico di Milano, Italy, 1992.
7. Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative

learning approach to the traveling salesman problem. IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION, 1997.

8. John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA, USA, 1992.

9. Kenneth A. De Jong, Kenneth A. De, Jong William, and William M. Spears. Using
genetic algorithms to solve np-complete problems, 1989.

10. Jin kao Hao and Raphaël Dorne. A new population-based method for satisfiability
problems. In Proceedings of the ECAI Workshop on Applied Genetic and other
Evolutionary Algorithms, pages 135–139. John Wiley & Sons, 1994.

11. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

12. R. Sethuram and M. Parashar. Ant colony optimization and its application to
boolean satisfiability for digital vlsi circuits. In IEEE Computer Society Press, ed-
itor, Proceedings of 14th International Conference on Advanced Computing and
Communication (ADCOM 2006), pages 507–512, Mangalore, India, December
2006.

13. Thomas Stützle and Holger H. Hoos. Max-min ant system. Future Gener. Comput.
Syst., 16(9):889–914, June 2000.

14. Marcos Villagra and Benjamı́n Barán. Ant colony optimization with adaptive
fitness function for satisfiability testing. In Proceedings of the 14th international
conference on Logic, language, information and computation, WoLLIC’07, pages
352–361, Berlin, Heidelberg, 2007. Springer-Verlag.

19

A Appendix

name type #variables #clauses

random ksat1.dimacs 5-CNF 20 20
random ksat3.dimacs 3-CNF 100 300
random ksat8.dimacs 3-CNF 20 91
random ksat10.dimacs 3-CNF 50 216
random ksat11.dimacs 3-CNF 50 200
random ksat12.dimacs 3-CNF 50 210
random ksat13.dimacs 3-CNF 50 200
random ksat14.dimacs 3-CNF 50 216
factoring21.dimacs variable CNF 369 83
factoring22.dimacs variable CNF 369 83

Fig. 17. List of problem instances.

algorithm ant genetic

processes 1 8 1 8

factorings f = 0 f = 2 f = 0 f = 2 f = 0 f = 2 f = 0 f = 2

name

random ksat1.dimacs 0.110 0.118 0.109 0.116 0.130 0.117 0.116 0.121
random ksat3.dimacs 0.631 0.714 0.523 0.714 0.827 1.091 1.370 1.607
random ksat8.dimacs 0.211 0.139 0.120 0.135 0.246 0.145 0.147 0.140
random ksat10.dimacs 3.047 1.881 4.101 3.517 ∅ ∅ 13.369 ∅
random ksat11.dimacs 4.140 1.499 4.589 2.775 12.506 ∅ 0.593 ∅
random ksat12.dimacs 0.300 0.664 0.275 0.811 1.346 0.790 0.890 1.445
random ksat13.dimacs 4.524 0.315 0.467 0.478 2.907 33.242 1.256 66.883
random ksat14.dimacs 6.657 9.599 1.533 6.412 ∅ ∅ ∅ ∅
factoring21.dimacs 3.454 119.874 6.766 ∅ ∅ ∅ ∅ ∅
factoring22.dimacs 22.557 4.057 5.051 8.234 ∅ ∅ ∅ ∅

Fig. 18. Runtime in seconds for ant colony optimization algorithm and genentic algo-
rith. ∅ means timeout, i.e.the algorithm took more than 180 seconds. It is remarkable
that runs with 8 threads are sometimes faster, or a least only a little bit slower, than
runs with just one thread or two factorings (which normallay generates 4 threads),
although we ran the benchmarks on a computer with just 4 CPU cores.

