
 1

SoaAlloc: Accelerating Single-Method
Multiple-Objects Applications on GPUs

Student Research Competition @ SPLASH 2018

Matthias Springer
Tokyo Institute of Technology

 2

Research Goal: OOP for GPUs

Traffic Flow Simulation [1] Evacuation Simulation [2]

[1] D. Strippgen et. al. Mult-agent Traffic Simulation with CUDA. HPCSIM ‘09.
[2] X. Li et. al. Cloning Agent-based Simulation on GPU. SIGSIM-PADS ‘15.
Animation: https://en.wikipedia.org/wiki/Wa-Tor

● Fast Object-oriented Programming (OOP) on GPUs

● SIMD-friendly class of OOP applications:
Single-Method Multiple-Objects (SMMO)

● Many practical SMMO applications in HPC, e.g.:

Predator-Prey

 3

Single-Method Multiple-Objects

● Run same method for all objects of a type

● Running Example: Fish-and-Shark Simulation

● Creating and deleting objects (fish, sharks) all the time!
● Run move() method for all fish and shark objects in parallel

 4

For Good Performance: SOA Data Layout

● Standard optimization on GPUs for good memory
bandwidth utilization and better cache performance

● class Shark {
 float health;
 Cell* position;
 /* ... /*

 void step_health() {
 health = health – 1;
 if (health == 0)
 delete this;
 }
};

Shark sharks[1000];

● float S_health[1000];
Cell* S_position[1000];

void S_step_health(int id) {
 S_health[id] =
 S_health[id] – 1;
 if (S_health[id] == 0)
 S_destruct(id);
}

vector load possible

Array of Structures (AOS) Structure of Arrays (SOA)

 5

Main Challenges

● How to combine dynamic memory allocations with SOA?

● How to keep fragmentation low?

● With thousands of parallel threads, how to implement all
of this in a lock-free fashion?
(Memory allocator runs entirely on the GPU!)

● Allocator Interface:
new<T>(), delete<T>(), do_all<T>(func*)

 6

Based on Ideas from Related Work

● Other GPU memory allocators (e.g., [3]):
Fast allocations, but slow memory access

● How to represent pointers? E.g.: global references [4]

● C++/CUDA DSLs for SOA data layout [5, 6]

[3] M. Steinberger et al. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. InPar 2012.
[4] J. Franco et al. You Can Have It All: Abstraction and Good Cache Performance. Onward! 2017.
[5] R. Strzodka. Abstraction for AoS and SoA Layout in C++. GPU Computing Gems Jade Edition, 2012.
[6] M. Springer et al. Ikra-Cpp: A C++/CUDA DSL for Object-oriented Programming with SOA Layout. WPMVP 2018.

 7

Allocation Data Structure

active block

 8

Allocation Data Structure

inactive block

 9

Fragmentation: Lower is Better

 10

Fragmentation: Lower is Better

 11

Object Allocation

 12

How to find blocks?

 13

How to find blocks?

Instead of scanning the entire heap:
Scan a (large) bitmap

 14

How to find blocks?

Instead of scanning the entire heap:
Traverse a hierarchical bitmap

 15

Preliminary Benchmark Results

More than 2x speedup compared to
MallocMC/ScatterAlloc

Fish-and-Sharks Simulation

 16

Preliminary Benchmark Results

Gray area: Fragmentation overhead
(allocated but unused memory)

Fish-and-Sharks Simulation

 17

Future Work

● Evaluate SoaAlloc with more benchmarks
● Explicit memory defragmentation may lead to further

speedups
● Refine implementation:

e.g., per-warp private blocks (similar to private heaps)

 18

Preliminary Benchmark Results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

