
A Layer-based Approach to
Hierarchical Dynamically-scoped

Open Classes

Matthias Springer†, 〇Hidehiko Masuhara†, Robert Hirschfeld§

† Department of Mathematical and Computing Sciences / School of Computing,
Tokyo Institute of Technology

§ Hasso Plattner Institute, University of Potsdam

August 10, 2016

Introduction

• ”Open Classes” in Ruby
• Modify existing classes or modules
• Add or overwrite methods

• Why Open Classes?
• Object-oriented auxiliary methods

e.g.: 5.minutes + 9.hours
• Multi-dimensional separation of concerns [Tarr99]

• Bug fixing (monkey patching)
• Support in programming languages

• Ruby: open classes
• Smalltalk: extension methods
• Python: modifiable method dictionary

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 2

Introduction

Open Classes in Ruby by example

in standard library
class Fixnum

...
end

in a different component
class Fixnum

def minutes
return self * 60

end

def hours
return self * 3600

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 3

Example 1: WebPage Library [Takeshita13]

• A library: WebPage
renders HTML and might show popups

• Two applications: using WebPage
• Browser: should not show popups
• Viewer: should show popup

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 4

The Problem: Global Visibility
class WebPage

def open(url)
...
if popup_requested

popup(...)
end

end

def popup(text)
show popup window

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 5

WebPage
library

class Browser; end overwrite Browser app

class Viewer; end Viewer app(should show popups)
OK NG!

The Problem: Global Visibility
class WebPage

def open(url)
...
if popup_requested

popup(...)
end

end

def popup(text)
show popup window

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 6

WebPage
library

class Browser; end overwrite Browser app

class Viewer; end Viewer app(should show popups)
NG!

Modifications	are	visible	
everywhere

↓
Other	components	can	break

Example 1: With Open Classes
class WebPage

def popup(text); end
end

class Viewer
def check(file)

...
if file.is_confidential?

page.popup(“confidential”)
end

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 7

overwrite with No-Op

Open Classes are
globally visible in Ruby

àViewer broken

Example 1: With Open Classes
require “webpage”
require “viewer”
require “browser”

class Application
def main

Browser.new.open(“http://www.titech.ac.jp”)
Viewer.new.check(”secret.html”)

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 8

will not show a popup

overwrites WebPage.popup

The Problem with Open Classes

• Global Visibility
• Modifications are visible everywhere
• Other components (e.g., Viewer) can break
à "Destructive Modifications"

• Solution: Locality of Changes

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 9

Our Solution: Extension Classes

Idea: scope control of modifications
• Using only classes (vs. classboxes, method shells etc.)
• Reusability through Ruby modules (or mixins)

(vs. new syntax for refinements)
• Consistent with Ruby’s language features:

take into account class nesting hierarchy
• Amenable to other programming languages with

• object-based, class-based
• unit of reuse (e.g., mixins/modules, traits, ...)
• (class nesting hierarchy)

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 10

Extension Classes

• Modifications are defined as "inner classes"
• only visible from "enclosing classes" (details follow)

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 11

class Browser
def open(url)

WebPage.new.open(url)
end

partial

class ::WebPage
def popup; end

end
end

Browser app

Partial class
targeting
::WebPage

modifies	(global)	WebPage
but	only	visible	from

Browser

Subtleties of visibility
should modification visible when it is called:
• directly?
• from a different

class?
• via a different class?
• via another

method in the
modified class?

• via a sibling inner
class?

• via a superclass?
• via a subclass?

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 12

class Browser
def open(url)
WebPage.
new.popup()

WebPage.new.open(url)
end

partial

class ::WebPage
def popup; end

end

class Helper
def run(webPage)

webPage.popup()
end

end

class WebPage
def open(url)

self.popup()
end

def popup; end
end

class Viewer
def open(url)
WebPage.popup()

end
end

original
overrider

Our principle of visibility
Modifications are visible
• in the context

of an enclosing
class, and

• as long as the
context remains
within enclosing/
sibling classes

(cf. COP)

A workaround to affect external
classes: empty modifications

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 13

class Browser
def open(url)
WebPage.
new.popup()

WebPage.new.open(url)
end

partial

class ::WebPage
def popup; end

end

class Helper
def run(webPage)

webPage.popup()
end

end

class WebPage
def open(url)

self.popup()
end

def popup; end
end

class Viewer
def open(url)
WebPage.popup()

end
end

original
overrider

Activation Rule

• Set of active classes S = { }
• When calling a method C.foo: Add C to S

browser.open(...) # S += Browser

viewer.check(...) # S += Viewer

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 14

Deactivation Rule

• Restore original S when returning from a method call
• When calling C.foo, deactivate all classes a ∈ S,

where C ∉ scope(a)
• Intuitively: scope(C) is a set of classes that are compatible

with the modifications defined by C
• Mathematically: scope(C) = { C } ∪ all target classes
• Definition will be extended later

class Browser

partial

class ::WebPage; end

end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 15

scope(Browser) =
{ Browser, WebPage }

• Browser is compatible with
Browser’s modifications

• WebPage is compatible with
Browser’s modifications

Example 1: Overview

class Application
def main

Browser.new.open("http://www.titech.ac.jp")
Viewer.new.check("secret.html")

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 16

{Object}

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 17

S = { }

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 18

Application.run

+ Application

S = { Application }

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 19

Application.run

- Application
+ Browser

S = { Browser }

Browser.open

scope(Application)
= { Application }

Browser ∉
scope(Application)

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 20

Application.run

+ WebPage

S = { Browser, WebPage }

Browser.open

WebPage.open
scope(Browser) =

{ Browser, WebPage }

WebPage∈
scope(Browser)

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 21

Application.run

no popup shown, because
Browser is active

S = { Browser, WebPage }

Browser.open

WebPage.open

WebPage.popup

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 22

Application.run

S = { Browser, WebPage }

Browser.open

WebPage.open

WebPage.popup

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 23

Application.run

S = { Browser }

Browser.open

WebPage.open

WebPage.popup

restore S

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 24

Application.run

S = { Application }

Browser.open

WebPage.open

WebPage.popup

restore S

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 25

Application.run

S = { Viewer }

Browser.open

WebPage.open

WebPage.popup

- Application
+ Viewer

Viewer.check

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 26

Application.run

S = { WebPage }

Browser.open

WebPage.open

WebPage.popup

Viewer.check

WebPage.open

- Viewer
+ WebPage

Example 1: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 27

Application.run

S = { WebPage }

Browser.open

WebPage.open

WebPage.popup

Viewer.check

WebPage.open

WebPage.popup

popup will be shown

Example 1: Variations
class Application

def main
...

end

partial

class ::WebPage
def popup

...
end

end

class ::Browser; end
class ::Viewer; end

end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 28

scope(Application) =
{ Application, WebPage,
Browser, Viewer}

Application will remain
active in a call sequence
Application à Viewer à

Webpage

Reusability with Modules

• Classes and modules can define partial classes
• Modifications are active in including classes (as if

they were defined there directly)

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 29

module NoPopup
partial

class ::WebPage
def popup
...

end
end

end

class Browser
include NoPopup
...

end

class Viewer
include NoPopup
#...

end

Class Activation Schemes

• How can we ensure that a class M is active when
running code from class C?

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 30

Class-based Activation
• Control flow passes

through class M
• For every class c that is

visited on the way to C:
c∈scope(M)

• M pushes modifications
to C (cf. local rebinding/
dynamic scoping)

Mixin-based Activation
• M is a module/mixin
• C includes M
• C requests modifications

from M

class ::Viewer; end
class ::WebPage; ...;
end

include NoPopup

Hierarchical Scoping

• How do we share modifications among an entire
class nesting hierarchy?

• Modifications of class C should affect all classes that
are nested inside C

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 31

Example 2: Overview

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 32

Activation / Deactivation Rule

• Extend both rules
• Activation: When calling a method C.foo, activate C

and all of its enclosing classes
• Deactivation: Extend scope(C) such that it also

includes the scope of all nested classes of C

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 33

Example 2: Scope of Classes

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 34

Modifications in Object are globally visible

Modifications in AddressBook are visible
in AddressBook and its nested classes

Modifications in Networking are visible
in Networking and its nested classes

Example 2: Invocation Code

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 35

module Networking
module Pinging

def self.ping(addr)
addr.to_address

end

...
end

...
end

class Application
def run

Networking::Pinging.ping(“127.0.0.1”)
end

end

Example 2: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 36

S = { Object }

Example 2: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 37

S = { Object, Application }

Application.run

+ Application

Example 2: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 38

S = { Object, Networking, Pinging }

Application.run

- Application
+ Networking
+ Pinging

Pinging.ping

Example 2: Step by Step

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 39

S = { Object, Networking, String }

Application.run

Networking
remains active

Pinging.ping

String.to_address
Run to_address
from Networking

String∈scope(Networking)

- Pinging
+ String

Implementation

• Prototypical implementation using metaprogramming
• Uses debug_inspectorAPI for stack walking to

implement customized method lookup in Ruby
• Give it a try (use Ruby 2.3):

git@github.com:matthias-springer/ruby-class-ext.git

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 40

Related Work

• Classboxes [Bergel03]: Additional organizational unit
(classbox), no support class nesting hierarchies

• Ruby Refinements:
Pure lexical scoping (no local rebinding)

• Context-oriented Programming (COP) [Hirschfeld08]:
Manual activation/deactivation necessary, difficult to
control when modifications should be deactivated

• Method Shells [Takeshita13]: Additional organizational
unit (method shell), new syntax for including/linking

• MultiJava [Clifton00], Expanders [Warth06]:
No dynamic scoping, no new methods

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 41

Summary

“Extension Classes”:
A new approach for open classes in Ruby

• Avoiding destructive modifications
• Reusable modifications (via modules)
• Scoped with respect to class nesting hierarchies
• Classes as only organizational unit

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 42

References
[Bergel03] A. Bergel, S. Ducasse, R. Wuyts. Classboxes: A Minimal Module Model Supporting
Local Rebinding, Modular Programming Languages, 2003.

[Clifton00] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein. MultiJava: modular open
classes and symmetric multiple dispatch for Java. OOPSLA, 2000.

[Hirschfeld08] R. Hirschfeld, P. Constanza, O. Nierstrasz. Context-oriented Programming.
Journal of Object Technology, 2008.

[Takeshita13] W. Takeshita, S. Chiba. Method Shells: avoiding conflicts on destructive class
extensions by implicit context switches. Software Composition, 2013.

[Tarr99] P. Tarr, H. Ossher, W. Harrison, S. M. Sutton. N degrees of separation: multi-
dimensional separation of concerns. ICSE, 1999.

[Warth06] A. Warth, M. Stanojević, T. Millstein. Statically scoped object adaptation with
expanders. OOPSLA, 2006.

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 43

Appendix

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 44

Ruby Refinements
module NoPopup

refine WebPage do
def popup; end

end
end

class Browser
using NoPopup

def open(url)
WebPage.new.open(url)

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 45

Pure lexical scoping: NoPopup will be
deactivated after calling WebPage.open

Combining Modifications

• What happens if multiple classes with variation
points for the same method are active?

• S is actually not a set but a stack
àClass composition stack

(cf. layer composition stack in COP [Hirschfeld08])
• Last activated class takes precedence
• Modified super keyword to navigate 3 hierarchies

• Inheritance hierarchy of layer class (i.e., of class
containing modifications) à takes care of mixins

• Class composition stack (proceed in COP, AOP)
• Inheritance hierarchy of receiver class

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 46

Method Lookup

1. Superclass inheritance
hierarchy of layer class

2. Layer composition
stack

3. Receiver class
inheritance
hierarchy

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 47

Example 3: Overview

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 48

Example 3: Mixins

• Conceptually, module inclusion (mixin application)
creates a new superclass

• Formalism does not have a special rule for mixin
application, but only for superclasses
à Assume that modules have been desugared to

explicit superclasses from now on

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 49

Example 3: Inheritance

class Application
include AST::Evaluating
include AST::Printing

def evaluate(node)
return node.evaluate

end
end

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 50

Mixins are desugared to
explicit superclasses

Ex. 3: Method Lookup for IntNode
1. Application [IntNode]
2. Evaluating() [IntNode]
3. Printing() [IntNode]
4. Object [IntNode]
5. IntNode
6. Application [Node]
7. Evaluating() [Node]
8. Printing() [Node]
9. Object [Node]
10. Node
11. Application [Object]
12. Evaluating() [Object]
13. Printing() [Object]
14. Object [Object]
15. Object

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 51

• Activation/deactivation rules remain
unchanged

• Effective superclass hierarchy determines
method to be executed (and also guides the
lookup for proceed (super))

Mixins are desugared to
explicit superclasses [...]: Partial class

(conceptually)

Assuming single active class Application

Def.: Effective Superclass Hierarchy
In Example 3:

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 52

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

Fig. 6 Example: E↵ective Superclass Hierarchy. The class composition stack is hB’, A’i.

actual superclass hierarchy and partial classes defined in classes
on the class activation stack are combined into an e↵ective super-
class hierarchy. The rule for merging both hierarchies is sim-
ple: For every class C in the actual superclass hierarchy, first
look up methods in partial classes of C on the layer composition
stack, then look up methods in C. Partial classes are conceptually
subclasses which are applied dynamically depending on the class
composition.

Definition. The e↵ective superclass hierarchy of a class C is de-
fined as E↵ective(C), where S is the class composition stack (S [1]
is top of stack), #C is the number of superclasses of a class C,
superi(C) is the i-th superclass of class C, L[C] is the partial
class targeting C defined in L (if there is one), hi brackets denote
a (ordered) list, and summation is used for list concatenation.

LayerHierarchy(L,C) =
#LX

i=0

hsuperi(L)[C]i

ClassLayers(C) =
⇣ |S |X

i=1

LayerHierarchy(S [i],C)
⌘
+ hCi

E↵ective(C) =
#CX

i=0

ClassLayers(superi(C))

LayerHierarchy(L,C) is the list of partial classes for class C de-
fined in class L and its superclasses. ClassLayers(C) is the list of
partial classes of C (among all activated classes) and C itself.

Figure 6 illustrates the e↵ective superclass hierarchy in an ex-
ample. Let us assume that the layer composition stack contains
classes A’ and B’ (which is on top). Classes A’, B, and B’ have
partial classes for C’ and class A has a partial class for its super-
class C. Consequently, the e↵ective superclass hierarchy of C is
defined as follows.

LayerHierarchy(B0,C0) =hB0.C0, B.C0i
LayerHierarchy(A0,C0) =hA0.C0i

LayerHierarchy(A,C) =hA.Ci
ClassLayers(C0) = hB0.C0, B.C0, A0.C0,C0i
ClassLayers(C) = hA.C,Ci

E↵ective(C) = hB0.C0, B.C0, A0.C0,C0, A.C,Ci
As another example, Figure 7 shows the e↵ective superclass hi-
erarchy for class IntNode defined in Section 3.3. If the mixin
Mod10Evaluating is applied, the hierarchy is prepended with
the corresponding partial class defined in that mixin.

4.5 Class Activation
If modifications defined in class L should be active when ex-

ecuting a method defined in class A, one of the following two
designs can be applied.

Fig. 7 Example: E↵ective Superclass Hierarchy for IntNode

Activation by Local Rebinding
In this design, programmers have to ensure that the control

flow reaches A via a sequence of methods defined in classes
L ! C1 ! . . .! Cn ! A with Ci 2 scope(L) (for all i = 1 . . . n)
and A 2 scope(L). The control flow may also originate from a
subclass of L or a nested class of L. Programmers can enforce that
a class Ci 2 scope(L) by adding a partial class targeting Ci to L
(partial classes can be empty). For example, in Section 3.1, n = 1,
L = Browser, C1 = WebPage, and A = WebPage when calling
WebPage.popup via WebPage.open from Browser.open.

Mixin-based Activation
The previous design is hard to accomplish if modifications

should be shared among a variety of classes. The following de-
sign encapsulates modifications in mixins and activates them us-
ing mixin application. A mixin is an abstract subclass that can be
applied to a number of superclasses. When partial classes are de-
fined inside a mixin M that is applied to a superclass C, all of M’s
modifications are active when the control flow passes through a
method in the context of the resulting class C0 (i.e., the polymor-
phic receiver class is C0).

Consider Figure 7 as an example. Evaluating() and
Printing() are mixin applications with partial classes for
IntNode. Class Application is defined as a subclass of the
application of both mixins. When a method is executed in the
context of Application, then that class is pushed onto the class
composition stack. The e↵ective superclass hierarchy of class
IntNode contains the partial classes of both mixins.

5. Implementation
This section gives an overview of our prototypical Ruby im-

plementation of Extension Classes. Currently, performance is
explicitly not a goal. Instead, our prototype is geared towards
language design experiments. It is implemented using metapro-
gramming, reflection, and Ruby libraries providing access to low-
level interpreter functionality. Thus, our implementation supports
only MRI (Ruby’s reference implementation) and Rubinius at this
time.

9

S = (Application)
(Object omitted)

LayerHierarchy(
Application, IntNode) =
(Application [IntNode],
Evaluating() [IntNode],
Printing() [IntNode],
Object [IntNode])

Same as above plus
IntNode
(only one layer/active class, i.e.,
Application in this example)

Account for
superclasses of
IntNode

Definition of “Scope of a Class”

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

4. Formal Concept
Extension Classes use a variant of context-oriented program-

ming [13] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-
tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [21], i.e., it is hard to anticipate the e↵ect of a
modifications. Therefore, our open classes mechanism should
allow programmers to define the scope of a modifications, i.e.,
where they are active. As a rule of thumb, we propose that a
modification should be deactivated if the control flow is passed
to another class or library that the programmer regards as a black
box. Defining a partial class (container for modifications) for a
target class C within class L essentially means that C is no longer
being regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class.

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-
fined as part of a class C are taken into account during method
lookup only if C is on the class activation stack. The exact lookup
semantics are described in Section 4.4.

Classes are activated and deactivated before doing a method
call (but after performing the method lookup) and when a method
call returns according to the following activation rule.

Activation Rule. Before dispatching to a method C.method,
make a copy of the current class activation stack and perform
the following operations.

(1) For all active classes L on the class activation stack, if
C < scope(L), deactivate (remove) L.

(2) Push C and all of its enclosing classes onto the layer (class)
composition stack (starting with the outermost class).

Once the method call returned, restore the original class activa-
tion stack.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, the position of that
class will be changed, such that it is on top of the stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and di�cult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not a↵ect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing
L, all target classes (and their reachable nested classes*6) corre-
sponding to partial classes of L, all classes in the scope of all
nested classes of L*7, and all classes in the scope of the super-
class of L (if super(L) , Object).

scope(L) = {L} (reflexivity)

[{C |C 2 nested⇤(target(P)) ^ P 2 partials(L)}
(dynamic scoping + local rebinding (+ hierarch. scoping))

[{C |C 2 scope(N) ^ N 2 nested(L)} (hierarch. scoping)

[scope(superclass(L)) (inheritance scoping)

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its e↵ective superclass hierar-
chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.

E↵ective Superclass Hierarchy
Extension Classes use the proceed expression for both call-

ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the

*6 nested⇤(C) = {C}[{D |D 2 nested⇤(N)^ N 2 nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested⇤(L) ✓ scope(L).

8

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 53

Direct method calls

Definition of “Scope of a Class”

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

4. Formal Concept
Extension Classes use a variant of context-oriented program-

ming [13] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-
tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [21], i.e., it is hard to anticipate the e↵ect of a
modifications. Therefore, our open classes mechanism should
allow programmers to define the scope of a modifications, i.e.,
where they are active. As a rule of thumb, we propose that a
modification should be deactivated if the control flow is passed
to another class or library that the programmer regards as a black
box. Defining a partial class (container for modifications) for a
target class C within class L essentially means that C is no longer
being regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class.

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-
fined as part of a class C are taken into account during method
lookup only if C is on the class activation stack. The exact lookup
semantics are described in Section 4.4.

Classes are activated and deactivated before doing a method
call (but after performing the method lookup) and when a method
call returns according to the following activation rule.

Activation Rule. Before dispatching to a method C.method,
make a copy of the current class activation stack and perform
the following operations.

(1) For all active classes L on the class activation stack, if
C < scope(L), deactivate (remove) L.

(2) Push C and all of its enclosing classes onto the layer (class)
composition stack (starting with the outermost class).

Once the method call returned, restore the original class activa-
tion stack.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, the position of that
class will be changed, such that it is on top of the stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and di�cult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not a↵ect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing
L, all target classes (and their reachable nested classes*6) corre-
sponding to partial classes of L, all classes in the scope of all
nested classes of L*7, and all classes in the scope of the super-
class of L (if super(L) , Object).

scope(L) = {L} (reflexivity)

[{C |C 2 nested⇤(target(P)) ^ P 2 partials(L)}
(dynamic scoping + local rebinding (+ hierarch. scoping))

[{C |C 2 scope(N) ^ N 2 nested(L)} (hierarch. scoping)

[scope(superclass(L)) (inheritance scoping)

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its e↵ective superclass hierar-
chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.

E↵ective Superclass Hierarchy
Extension Classes use the proceed expression for both call-

ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the

*6 nested⇤(C) = {C}[{D |D 2 nested⇤(N)^ N 2 nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested⇤(L) ✓ scope(L).

8

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 54

|

Indirect method calls

Definition of “Scope of a Class”

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

4. Formal Concept
Extension Classes use a variant of context-oriented program-

ming [13] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-
tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [21], i.e., it is hard to anticipate the e↵ect of a
modifications. Therefore, our open classes mechanism should
allow programmers to define the scope of a modifications, i.e.,
where they are active. As a rule of thumb, we propose that a
modification should be deactivated if the control flow is passed
to another class or library that the programmer regards as a black
box. Defining a partial class (container for modifications) for a
target class C within class L essentially means that C is no longer
being regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class.

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-
fined as part of a class C are taken into account during method
lookup only if C is on the class activation stack. The exact lookup
semantics are described in Section 4.4.

Classes are activated and deactivated before doing a method
call (but after performing the method lookup) and when a method
call returns according to the following activation rule.

Activation Rule. Before dispatching to a method C.method,
make a copy of the current class activation stack and perform
the following operations.

(1) For all active classes L on the class activation stack, if
C < scope(L), deactivate (remove) L.

(2) Push C and all of its enclosing classes onto the layer (class)
composition stack (starting with the outermost class).

Once the method call returned, restore the original class activa-
tion stack.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, the position of that
class will be changed, such that it is on top of the stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and di�cult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not a↵ect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing
L, all target classes (and their reachable nested classes*6) corre-
sponding to partial classes of L, all classes in the scope of all
nested classes of L*7, and all classes in the scope of the super-
class of L (if super(L) , Object).

scope(L) = {L} (reflexivity)

[{C |C 2 nested⇤(target(P)) ^ P 2 partials(L)}
(dynamic scoping + local rebinding (+ hierarch. scoping))

[{C |C 2 scope(N) ^ N 2 nested(L)} (hierarch. scoping)

[scope(superclass(L)) (inheritance scoping)

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its e↵ective superclass hierar-
chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.

E↵ective Superclass Hierarchy
Extension Classes use the proceed expression for both call-

ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the

*6 nested⇤(C) = {C}[{D |D 2 nested⇤(N)^ N 2 nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested⇤(L) ✓ scope(L).

8

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 55

Visible in all nested classes of target classes

Visible in all nested classes of defining class

Definition of “Scope of a Class”

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

4. Formal Concept
Extension Classes use a variant of context-oriented program-

ming [13] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-
tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [21], i.e., it is hard to anticipate the e↵ect of a
modifications. Therefore, our open classes mechanism should
allow programmers to define the scope of a modifications, i.e.,
where they are active. As a rule of thumb, we propose that a
modification should be deactivated if the control flow is passed
to another class or library that the programmer regards as a black
box. Defining a partial class (container for modifications) for a
target class C within class L essentially means that C is no longer
being regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class.

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-
fined as part of a class C are taken into account during method
lookup only if C is on the class activation stack. The exact lookup
semantics are described in Section 4.4.

Classes are activated and deactivated before doing a method
call (but after performing the method lookup) and when a method
call returns according to the following activation rule.

Activation Rule. Before dispatching to a method C.method,
make a copy of the current class activation stack and perform
the following operations.

(1) For all active classes L on the class activation stack, if
C < scope(L), deactivate (remove) L.

(2) Push C and all of its enclosing classes onto the layer (class)
composition stack (starting with the outermost class).

Once the method call returned, restore the original class activa-
tion stack.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, the position of that
class will be changed, such that it is on top of the stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and di�cult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not a↵ect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing
L, all target classes (and their reachable nested classes*6) corre-
sponding to partial classes of L, all classes in the scope of all
nested classes of L*7, and all classes in the scope of the super-
class of L (if super(L) , Object).

scope(L) = {L} (reflexivity)

[{C |C 2 nested⇤(target(P)) ^ P 2 partials(L)}
(dynamic scoping + local rebinding (+ hierarch. scoping))

[{C |C 2 scope(N) ^ N 2 nested(L)} (hierarch. scoping)

[scope(superclass(L)) (inheritance scoping)

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its e↵ective superclass hierar-
chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.

E↵ective Superclass Hierarchy
Extension Classes use the proceed expression for both call-

ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the

*6 nested⇤(C) = {C}[{D |D 2 nested⇤(N)^ N 2 nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested⇤(L) ✓ scope(L).

8

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 56

Visible in nested classes + target classes of superclasses

Definition of “Scope of a Class”

2016-2-(6): Manuscript for presentation at IPSJ-SIGPRO, 10 August 2016.

second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

4. Formal Concept
Extension Classes use a variant of context-oriented program-

ming [13] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-
tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [21], i.e., it is hard to anticipate the e↵ect of a
modifications. Therefore, our open classes mechanism should
allow programmers to define the scope of a modifications, i.e.,
where they are active. As a rule of thumb, we propose that a
modification should be deactivated if the control flow is passed
to another class or library that the programmer regards as a black
box. Defining a partial class (container for modifications) for a
target class C within class L essentially means that C is no longer
being regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class.

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-
fined as part of a class C are taken into account during method
lookup only if C is on the class activation stack. The exact lookup
semantics are described in Section 4.4.

Classes are activated and deactivated before doing a method
call (but after performing the method lookup) and when a method
call returns according to the following activation rule.

Activation Rule. Before dispatching to a method C.method,
make a copy of the current class activation stack and perform
the following operations.

(1) For all active classes L on the class activation stack, if
C < scope(L), deactivate (remove) L.

(2) Push C and all of its enclosing classes onto the layer (class)
composition stack (starting with the outermost class).

Once the method call returned, restore the original class activa-
tion stack.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, the position of that
class will be changed, such that it is on top of the stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and di�cult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not a↵ect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing
L, all target classes (and their reachable nested classes*6) corre-
sponding to partial classes of L, all classes in the scope of all
nested classes of L*7, and all classes in the scope of the super-
class of L (if super(L) , Object).

scope(L) = {L} (reflexivity)

[{C |C 2 nested⇤(target(P)) ^ P 2 partials(L)}
(dynamic scoping + local rebinding (+ hierarch. scoping))

[{C |C 2 scope(N) ^ N 2 nested(L)} (hierarch. scoping)

[scope(superclass(L)) (inheritance scoping)

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its e↵ective superclass hierar-
chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.

E↵ective Superclass Hierarchy
Extension Classes use the proceed expression for both call-

ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the

*6 nested⇤(C) = {C}[{D |D 2 nested⇤(N)^ N 2 nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested⇤(L) ✓ scope(L).

8

August 10, 2016第110回プログラミング研究発表会 (SWoPP2016) TiTech / HPI 57

Special rule because Object is the superclass of all
classes. scope(Object) contains all classes.

