Assignment 3, Problem 3, Practical Parallel Computing Course

Breadth-first Search in CUDA

Matthias Springer *

Tokyo Institute of Technology

matthias.springer@acm.org

Abstract

This work presents a number of algorithms found in literature for
breath-first search (BFS) on GPUs in CUDA, along with a small
performance evaluation section.

1. Breadth-first Search

Breadth-first search (BFS) is a well-studied algorithm in parallel
computing with many practical applications. It can be used to de-
cide vertex reachability and is the foundation for other algorithms
such as single-source shortest path (SSSP) or the Ford-Fulkerson
algorithm for finding the minimum cut/maximum flow of a graph.
In this work, we focus on BFS and how to parallelize it for GPUs in
CUDA. We present a number of performance optimizations along
with a performance study at the end.

Given a directed graph G = (V, E), BFS assigns every vertex
v the distance from a given start node s, i.e., the minimum number
of edges to reach v from s. In contrast to depth-first search (DFS),
BFS is a good candidate for parallelization, because the neighbor-
hood of a vertex can be explored in parallel.

2. Sequential Algorithm

Algorithm 1 shows a sequential version of BFS. It maintains a
queue of vertices which should be processed. When a vertex is
processed, the algorithm updates the distance of all unprocessed
vertices and adds them to the queue. There is no dedicated flag to
indicate whether a vertex was visited. Instead, an infinite distance
value means that the vertex was not processed yet.

Algorithm 1 Sequential BFS

: forallve Vdo
v.distance < co
. start_vertex.distance < 0
q < new queue
: q.push(start_vertex)
: while !q.empty() do
V 4= q.pop()
for all n € v.neighbors do
if n.distance = oo then
n.distance < v.distance + 1

q.push(n)

N R R PSR

—_—

3. Vertex-centric CUDA Implementation

Algorithm 2 shows pseudo code for an unoptimized GPU imple-
mentation. It is a vertex-centric implementation, i.e., parallelism
is expressed in terms of vertices. For example, there may be one
thread per vertex. If there are less threads than vertices, then work
should be divided evenly among all vertices. This implementation

* Student ID: 15D54036

v_adj_length
2|1]5] .. |3]
v_adj_begin
0[2[3] .. |19

Ty
6[17]9|513[2] .. |4]
v_adj_list

Figure 1: Example: Adjacency List Data Structure

does not maintain a queue, but every vertex is processed in every
iteration, making the algorithm similar to the Bellman-Ford algo-
rithm for SSSP.

Algorithm 2 Unoptimized CUDA BFS

: forallve Vdo

v.distance < oo

: start_vertex.distance <— 0

: still_running < true

: while still running do

still_running < false

for all v € V in parallel do

for all n.distance > v.neighbors + 1 do

n.distance <— v.distance + 1
still_running <— true

SR A o

—_

The CUDA implementation represents the graph with three
integer arrays (Figure 1) [1].

* v_adj_list: A contatenation of all adjacency lists of all ver-
tices (size |E|).

* v_adj-begin: An array of size |V, storing offsets into the
previous array. The th offset markes the position where the
adjacency list for ith vertex begins.

* v_adj_length: An array of size |V|, storing the length of every
adjacency list. This information is held redundantly. It could
also be computed using only the previous array (except for the
last value).

Figure 9 shows the source code of a basic vertex-centric imple-
mentation. Every thread in this implementation is assigned % ver-
tices, where n is the number of threads. The first outer loop ensures
that every vertex is processed, even if less threads than vertices are
spawned. For every vertex, the program iterates over all neighbors.
If the destination vertex is reachable from the current vertex with a
shorter distance, the distance in the result array is updated. The
boolean value still_running is set to true, if at least one distance
value is updated. This value is used to decide whether another iter-
ation of the algorithm should be run.

This algorithm suffers from two shortcomings. First, the in-
ner for loop induces branch divergence if vertices within a warp

2017/6/11

(group of 32 threads) have a different out-degree, resulting in a
different number of loop iterations. Second, this implementation
processes vertices even the distance of their incoming vertices has
not changed. Such vertices do not have to be processed in an it-
eration. In the following, we present optimizations that attempt to
solve these shortcomings.

3.1 Vertex Frontier

This version maintains a boolean frontier array of size |V|. In
every iteration, a vertex i is processed only if frontier[i] is set
to true. A vertex is added to the frontier if its distance was is up-
dated. The frontier corresponds to the queue in a sequential imple-
mentation. It ensures that only those vertices are processed whose
distance from the source vertex is one unit larger than the vertices
from the previous iteration. To make sure that a distance value is
not updated with a larger one, vertices are only updated in a single
iteration but not afterwards'. This is indicated by a boolean value
in the visited array. Alternatively, this implementation could also
compare distance values, similar to the previous implementation.

Figure 10 shows the source code of this implementation. In
addition to the frontier and visited arrays, this implementation
has an additional array updated. Instead of setting frontier flags
directly, the first kernel only sets updated flags. A second kernel
sets the frontier flag for a given vertex only if its updated flag was
set before. This is necessary to ensure that a thread does not start
processing vertices that were added to the frontier earlier in the
same iteration. If the number of threads running in parallel equals
the number of vertices, this indirection is not required.

3.2 Vertex Frontier with Iteration Counter

The previous implementation maintains four arrays and launches
two kernels per iteration. It can be simplified based on the obser-
vation that every vertex is updated with the same distance value in
an iteration [3]. The kernel of the optimized implementation (Fig-
ure 11) uses only a single array for the distance values and receives
an additional iteration number parameter. A vertex is part of the
frontier if its distance value equals the current iteration number. All
following implementations in this section are based on this imple-
mentation.

3.3 Deferring Outliers

The next optimization will attempt to reduce the problem of warp
divergence due to different out-degrees of vertices within a warp.
Before a vertex is processed, its out-degree is analyzed. If it exceeds
a certain threshold value, it is added to a queue and processed at the
very end of the iteration (Figure 2) [3]. Therefore, it does not stall a
warp with mostly vertices of lower out-degree. This optimization
does not reduce the total amount of work. Instead, it processes
vertices of low out-degree together and vertices of high out-degree
together, in order to reduce waiting time.

The queue of deferred vertices is stored in shared memory, i.e.,
there is one queue per block. New vertices are inserted using an
atomic add operation. Such operations are slow in general, but ac-
ceptable if performed on shared memory. If the shared memory
queue is full, vertices are no longer deferred but processed imme-
diately. To avoid this problem, programmers can increase the size
of the queue up to 48 KB (depending on the configuration of L1
cache and shared memory). However, this limits the number of
blocks that can run in parallel. Alternatively, blocks can be made
smaller, reducing the probability of a queue running full.

Figure 12 shows the source code of this optimization (kernel
only). The out-degree threshold is defined by DEFER_MAX and the

! Multiple threads might update the same distance value at the same time.
This is data race, but it is harmless: All threads will write the same value.

defer to end of iteration

shared memory queue

Figure 2: Deferring Outliers in Shared Memory Queue

size of the queue can be controlled with D_BLOCK_QUEUE_SIZE.
The check in Line 25 determines whether a vertex should be de-
ferred or processed. It is processed directly if its out-degree is be-
low the threshold or the queue is full. Since blockDim.x many
threads may insert a vertex into the queue at a time, the queue is
considered full if it has less than blockDim.x free slots. This is
required because the capacity check and the inserting process are
not atomic: There could be more threads in the else branch than
free slots are available, because the atomic add is performed after
the decision is made to insert a vertex into the queue.

3.4 Data Reordering / Redirection

Another approach to reduce the problem of warp divergence is to
sort all vertices by out-degree, such that all threads within a warp
process vertices with a similar out-degree at the same time. This
can be done with a job reordering array or by physically changing
the order of data [5]. The first option involves reading an additional
redirection array, so it is potentially slower than reodering data
physically. The benchmarked implementations do not change the
structure of the outermost loop of the kernel; the kernel is identical
to the kernel in Figure 11. Therefore, if less threads than vertices
are used, a thread might first process a vertex with low out-degree
and then a vertex with high out-degree. The same is the case for
all other threads within a the warp, so all threads within a warp are
likely to process vertices of similar out-degree at the same time.

3.5 Virtual Warp-centric Programming

The next implementation presents another technique for reducing
warp divergence known as Virtual Warp-centric Programming [3].
This technique divides a program into multiple SISD (single in-
struction, single data) and SIMD (single instruction, multiple data)
phases. It introduces the notion of a virtual warp, which is a frac-
tion of a warp, i.e., every warp consists of multiple virtual warps
(Figure 3). Within a SISD phase, only one thread in a virtual warp
is executing. This is done via replicated computation, i.e., every
thread processes the same data and instructions. Within a SIMD
phase, every thread in a virtual warp processes different data.

In BFS, every virtual warp is assigned one vertex. The SISD
phase consists of calculating the next vertex ID and checking if a
vertex belongs to the current iteration. The SIMD phase consists
of iterating over the neighborhood. All neighborhood vertices are
distributed evenly among all threads within a virtual warp. If the
size of a virtual warp is W_SZ and a vertex has n neighbors, then

every thread in that virtual warp performs ;e many updates.

2017/6/11

thread 0 W_SZ=2 " pefore: 1 thread =1 vertex
now: 1 virtual warp =1 vertex
thread 1 virtual warp
warp

block

Figure 3: Virtual Warp-centric Programming for BFS

From a technical perspective, this technique is a mixture of
a vertex-centric and an edge-centric implementation. The virtual
warp size W_SZ controls how many threads are assigned the same
vertex and how many edges share one thread.

3.6 Hierarchical Frontier Queue

The next optimization uses a different technique for maintaining a
frontier of vertices. Instead of the boolean frontier array, vertices
are inserted into a hierarchical queue [4]. The queue contains of two
levels: First, every block has a queue in shared memory, into which
vertices are inserted. Second, at the end of every iteration, all shared
memory queues are merged into a single global memory queue
(Figure 4). Atomic operations are required to calculate the next
offset at which a vertex is inserted in a queue. Atomic operations
are reasonably fast in shared memory but slow in global memory.
Since the size of every shared memory queue is known at the end
of an iteration, only gridDim.x (number of blocks) many atomic
operations are required in global memory.

shared memory

global memory

Atomic add/increment required for updating offsets (l arrows)
Figure 4: Frontier Queue in Shared and Global Memory

Figure 14 shows the source code for this implementation. Its
main limitation is the size of the shared memory queue. Large
graphs cannot be processed if a shared memory queue over-
flows. To keep the size of queues small, the implementation writes
queues to the shared memory after every iteration of the outer-
most loop. This increases the number of atomic operations in
global memory but allows us to process larger graphs. The con-
stant BLOCK_QUEUE_SIZE can be adapted to allow for even larger
graphs. However, this will increase the shared memory usage and
put a lower limit on the maximum number of blocks that can run
in parallel. Alternatively, the size of blocks can be reduced to make
queue overflows less probable. Another problem of this implemen-
tation is that there may be duplicate vertices in a queue. If two
vertices update the same vertex ¢, then ¢ will be added to the queue
twice.

3.7 Frontier Queue with Prefix Sum

The previous implementation suffers from performance and scal-
ing issues due to atomic operations and the limited size of shared
memory. The next optimization uses a different approach for gen-
erating a vertex frontier queue: First, the kernel performing BFS

generates a boolean frontier array. Then, that boolean frontier ar-
ray is converted into an array of vertex IDs. The second step is the
challenging one. It can be done in parallel with a prefix sum array.

‘true‘tme‘false‘true‘false‘false‘true‘true‘

frontier
(2 fifofarfofofa]n
Lol 2[3]s]3[4 |eemam
‘0‘1‘3‘6‘7‘ queue

Figure 5: Converting Frontier to Queue

A prefix sum array P of an array A is an array of same size,
where P[i] contains the sum of all previous values in A, i.e.,
>_i—0 Alj]. Let us assume that every thread is assigned one vertex
when generating the queue () from the frontier array F', and P is
the prefix sum array of F' (false = O, true = 1). The thread with ID
1 writes the value 4 into Q[P[i]] if F[¢] is true. An example of this
process is shown in Figure 5.

There is a well-studied two-phase prefix sum algorithm [2] for
GPUs consisting of an up-sweep phase and a down-sweep phase.
The first phase corresponds to a parallel reduce. The second phase
can be seen as a reverse operation. We do not explain the details
here but refer to previous work instead. An efficient CUDA imple-
mentation is challenging for three reasons: First, the implementa-
tion must be able to handle special cases if the size of the frontier
array is not a power of two. This is similar to the special cases that
arise in a parallel reduction. Second, computations should be done
in shared memory to avoid reading from/writing to slow global
memory. However, the frontier arrays of large graphs might not fit
in shared memory entirely. In that case, partial results can be cal-
culated in shared memory, similar to an efficient implementation
of parallel reduction. Third, a straight forward implementation in
shared memory suffers from bank conflicts, but there are techniques
to avoid them (e.g., adding padding to data in shared memory).

The implementation used in this work (simplified version in
Figure 15) is taken from the Nvidia website? and fully optimized. It
utilizes shared memory, has only few bank conflicts, and supports
frontiers of arbitrary size.

4. Edge-centric CUDA Implementation

The implementations in this section are edge-centric, i.e., paral-
lelism is expressed in terms of edges. To that end, a different data
structure is used. The graph is encoded in two arrays v_adj_from
and v_adj_to of size | E|, where the first array contains start vertex
IDs of edges and the second array contains target vertex IDs.

4.1 Unoptimized Implementation

This implementation does not maintain a vertex frontier and is
similar to the algorithm shown in Figure 9. It attempts to update
vertices using every edge in the graph (Figure 16).

4.2 Vertex Frontier with Iteration Counter

This implementation maintains a vertex frontier using an iteration
counter and is similar to the algorithm shown in Figure 11. Its
source code is shown in Figure 17.

2https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_
ch39.html

2017/6/11

Dataset V| |E| avg. degree | degree stddev | med. degree | diameter
Slashdot 77360 905468 11.705 36.844 3 10
WikiTalk 2394385 | 5021410 2.097 99.915 0 9
California Roads 1965206 | 5533214 2.816 0.995 3 849

Figure 6: Dataset Characteristics

5. Benchmarks

This section contains an evaluation of all previously described
BFS variants. All benchmarks were run five times (minimum is
reported) on the TSUBAME 2.5 supercomputer at Tokyo Institute
of Technology with three real datasets (Figure 6) taken from the
Stanford Network Analytics Project (SNAP): Slashdot is a friends
graph of the Slashdot news website from November 2008. WikiTalk
is based on talk pages of Wikipedia from January 2008. Vertices
represent registered users and there is a link ¢ — j if user %
edited user j’s talk page at least once. CA Roads is a graph of the
California road network.

Figure 7 gives an overview of all BFS variants presented in this
work. Benchmarks were run for a variety of block size/grid size
combinations (see x/y axis labels of Figure 8) and every data point
shows the best configuration.

For Slashdot, the unoptimized first vertex-centric implementa-
tion is slowest, as expected. Having a frontier of vertices can cut
the runtime in half. Most notably, this dataset performs very well
with virtual warp-centric programming at a virtual warp size of 16.
This is because the average out-degree of vertices is close to that
number, allowing for good parallelism when exploring neighbors,
while avoiding warp divergence. Choosing a slightly smaller virtual
warp size could possibly increase performance even more, probably
close to the performance of the edge-centric version. Maintaining
a vertex queue does not pay off in this dataset, because the number
of vertices is small, resulting in minimal overhead for checking the
frontier field of all vertices.

For the California Road Network, the version utilizing prefix
sums (frontier_scan) is slowest. The graph is in fact cut off: The
best configuration with prefix sums has a runtime of 1375288
microseconds. This BFS variant does not perform well in any of
our experiments, probably due to its complexity and the relatively
low overhead of checking all vertices (instead of a frontier) that
could be saved. However, in this dataset it performs especially
bad, because the number of vertices is high, making the prefix
sum computation expensive. The version with a frontier queue
performs best, because the average out-degree is low and only few
of the many vertices are active in an iteration. Virtual warp-centric
programming does not pay off, because the average out-degree is
too low for additional parallelism.

For WikiTalk, using a frontier queue is best. This is because
the graph is sparse, as can be seen from the out-degree median. Re-
ordering vertices by out-degree also gives a little bit of performance
improvement, indicating that there is some degree imbalance, as
can also be seen from the out-degree variance in this dataset. Simi-
lar to the previous dataset, the version with prefix sums is slowest.

References

[1] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms
on the gpu using cuda. In Proceedings of the 14th International
Conference on High Performance Computing, HiPC’07, pages 197—
208, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix
sum (scan) with cuda. GPU Gems, 3(39):851-876, 2007.

[3] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.
Accelerating cuda graph algorithms at maximum warp. In Proceedings

(4]

[5

—

of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP ’11, pages 267-276, New York, NY, USA, 2011.
ACM.

Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu
implementation of breadth-first search. In Proceedings of the 47th
Design Automation Conference, DAC 10, pages 52-55, New York,
NY, USA, 2010. ACM.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.
On-the-fly elimination of dynamic irregularities for gpu computing.
SIGPLAN Not., 46(3):369-380, March 2011.

2017/6/11

Runtime

Runtime

Runtime

16000

14000 1

12000 1

10000 1

8000 1

6000 1

4000 1

2000 1

(a) Slashdot

400000 A

350000 -

300000 -

250000 -

200000 -

150000 -

100000 -

50000 1

04

10000 1

8000 A

6000 1

4000 A

2000 1

(c) WikiTalk

Figure 7: Performance Study: Overview of runtime of various BFS implementations

2017/6/11

10000 20000 30000 40000 O 4000 8000 12000 160000 3000 6000 9000 12000 O 2500 5000 7500 10000 0 1000 2000 3000 4000 0 2000 4000 6000 8000

0 4000 8000 12000 16000 O 3000 6000 9000 12000 O 2500 5000 7500 10000 0 2000 4000 6000 8000 0 5000 10000 15000 20000 0.0 0.2 0.4 0.6 0.8 1.0

- 16 32 48 64 80 96 112128256 384
&8

1000 2000 3000 4000 0 1200 1600 0

2000 4000 6000 8000 1600 2400 3200

0 800 1600 2400 3200 0

888883 "R II8E&ARRE 2RI LA & 16 32 48 64 80 96 112128256384
-8 aR o888 b R

(b) California Road Network

Figure 8: Performance Study: Runtime at different grid sizes (x axis) and block sizes (y axis)

6 2017/6/11

2| {

__global__ void kernel_cuda_simple(...)
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;
for (int v = 0; v < num_vertices; v += num_threads)
{
int vertex = v + tid;
if (vertex < num_vertices)
{
for (int n = 0; n < v_adj_length[vertex]; nt++)
{
int neighbor = v_adj_list[v_adj_begin[vertex] + nl;
if (result[neighbor] > result[vertex] + 1)
{
result [neighbor] = result[vertex] + 1;
*still_running = true;
}
}
}
}
}

void run()
{ /% Setup and data transfer code omitted */
while (*still_running)

{

cudaMemcpy (k_still_running, &false_value, sizeof(bool) * 1, cudaMemcpyHostToDevice);

kernel_cuda_simple<<<BLOCKS, THREADS>>>(...);
cudaMemcpy (still_running, k_still_running, sizeof(bool) * 1, cudaMemcpyDeviceToHost) ;

}

cudaThreadSynchronize() ;

}

Figure 9: Unoptimized Vertex-centric Implementation

2017/6/11

h B

__global_

{

}

void kernel_cuda_frontier(...)

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;

for (int v = 0; v < num_vertices; v += num_threads)

{
int vertex = v + tid;
if (vertex < num_vertices && frontier[vertex])
{
frontier[vertex] = false;
for (int n = 0; n < v_adj_length[vertex]; n++)
{
int neighbor = v_adj_list[v_adj_begin[vertex] + nl;
if (!visited[neighbor])
{
result[neighbor] = result[vertex] + 1;
updated[neighbor] = true;
}
}
}
}

__global__ void kernel_cuda_frontier_update_flags(...)

{

)|}

{

int tid = blockIdx.x * blockDim.x + threadldx.x;
int num_threads = blockDim.x * gridDim.x;

for (int v = 0; v < num_vertices; v += num_threads)

{
int vertex = v + tid;
if (vertex < num_vertices && updated[vertex])
{
frontier[vertex] = visited[vertex] = *still_running = true;
updated[vertex] = false;
}
}

5| void run()

do
{

*still_running = false;
cudaMemcpy (k_still_running, still_running, sizeof(bool) * 1, cudaMemcpyHostToDevice);

kernel_cuda_frontier<<<BLOCKS, THREADS>>>(...);
kernel_cuda_frontier_update_flags<<<BLOCKS, THREADS>>>(...);

cudaMemcpy (still_running, k_still_running, sizeof(bool) * 1, cudaMemcpyDeviceToHost) ;
} while(*still_running);

cudaThreadSynchronize() ;

Figure 10: Vertex-centric Implementation with Frontier

2017/6/11

__global__ void kernel_cuda_frontier_numbers(int iteratiom, ...)

2| {

int tid = blockIdx.x * blockDim.x + threadIldx.x;
int num_threads = blockDim.x * gridDim.x;

for (int v = 0; v < num_vertices; v += num_threads)
{

int vertex = v + tid;

if (vertex < num_vertices && result[vertex] == iteration)
{

for (int n = 0; n < v_adj_length[vertex]; n++)

{

int neighbor = v_adj_list[v_adj_begin[vertex] + n];

if (result[neighbor] == MAX_DIST)

{
result [neighbor] = iteration + 1;
*still_running = true;

}

void run()
{

int iteration = O0;
do
{
*still_running = false;
cudaMemcpy (k_still_running, still_running, sizeof(bool) * 1, cudaMemcpyHostToDevice);

kernel_cuda_frontier_numbers<<<BLOCKS, THREADS>>>(iteration++, ...);

cudaMemcpy (still_running, k_still_running, sizeof(bool) * 1, cudaMemcpyDeviceToHost);
} while(*still_running);

cudaThreadSynchronize() ;

Figure 11: Vertex-centric Implementation with Frontier and Explicit Iteration Counter

2017/6/11

=

#define DEFER_MAX 16

2| #define D_BLOCK_QUEUE_SIZE 2048

5|4

__global__ void kernel_cuda_frontier_numbers_defer(int iteration, ...)
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;
__shared__ int queue_size;
__shared__ int next_queue[D_BLOCK_QUEUE_SIZE];
if (threadIdx.x == 0)
{
queue_size = 0;
}
__syncthreads(Q);
for (int v = 0; v < num_vertices; v += num_threads)
{
int vertex = v + tid;
if (vertex < num_vertices && result[vertex] == iteration)
{
if (v_adj_length[vertex] < DEFER_MAX || queue_size >= D_BLOCK_QUEUE_SIZE - blockDim.x)
{
for (int n = 0; n < v_adj_length[vertex]; n++)
{
int neighbor = v_adj_list[v_adj_begin[vertex] + nl;
if (result[neighbor] == MAX_DIST)
{
result [neighbor] = iteration + 1;
*still_running = true;
}
}
}
else
{
// Add to queue (atomicAdd returns original value)
int position = atomicAdd(&queue_size, 1);
next_queue [position] = vertex;
}
}
__syncthreads();
}
// Process outliers
for (int v = 0; v < queue_size; v += blockDim.x)
{
if (v + threadIdx.x < queue_size)
{
int vertex = next_queue[v + threadIdx.x];
for (int n = 0; n < v_adj_length[vertex]; n++)
{
int neighbor = v_adj_list[v_adj_begin[vertex] + n];
if (result[neighbor] == MAX_DIST)
{
result [neighbor] = iteration + 1;
*still_running = true;
}
}
}
}
}

1Y

Figure 12: Vertex-centric Implementation with Frontier, Explicit Iteration Counter and Deferring Outliers

01776711

o €

:| __global_

#define W_SZ 16

void kernel_cuda_virtual_wc(int iteration, ...)

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;

for (int v2 = 0; v2 < num_vertices; v2 += num_threads)

{
int vertex2 = v2 + tid;
// W_SZ many threads are processing vertex2
int warp_id = vertex2 / W_SZ;
int warp_offset = vertex2 J, W_SZ;
for (int v = 0; v < W_SZ; v++)
{
int vertex = warp_id * W_SZ + v;
if (vertex < num_vertices && result[vertex] == iteration)
{
for (int n = 0; n < v_adj_length[vertex]; n += W_SZ)
{
int neighbor_index = n + warp_offset;
if (neighbor_index < v_adj_length[vertex])
{
int neighbor = v_adj_list[v_adj_begin[vertex] + neighbor_index];
if (result[neighbor] == MAX_DIST)
{
result [neighbor] = result[vertex] + 1;
*still_running = true;
}
}
}
}
}
}

Figure 13: Vertex-centric Implementation with Frontier, Explicit Iteration Counter and Virtual Warp-centric Programming

2017/6/11

#define BLOCK_QUEUE_SIZE 8192

3| __global_

{

void kernel_cuda_frontier_queue(int iteration, ...)

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;

__shared__

int input_queue_size;

if (threadldx.x == 0)

{
input_queue_size = *input_queue;
}
__syncthreads();
__shared__ int queue_size;
__shared__ int next_queue[BLOCK_QUEUE_SIZE];
queue_size = 0;
__syncthreads(Q);

for (int v = 0; v < input_queue_size; v += num_threads)

{
if (v + tid < input_queue_size)
{
int vertex = input_queue[v + tid + 1];
for (int n = 0; n < v_adj_length[vertex]; n++)
{
int neighbor = v_adj_list[v_adj_begin[vertex] + nl;
if (result[neighbor] == MAX_DIST)
{
result[neighbor] = iteration + 1;
// Add to queue (atomicAdd returns original value)
int position = atomicAdd(&queue_size, 1);
next_queue [position] = neighbor;
}
}
}
__syncthreads();
__shared__ int global_offset;
if (threadIdx.x == 0)
{
// First value is size of queue
global_offset = atomicAdd(output_queue, queue_size);
}
__syncthreads();
// Copy queue to global memory
for (int i = 0; i < queue_size; i += blockDim.x)
{
if (i + threadIldx.x < queue_size)
{
output_queue[global_offset + i + threadIdx.x + 1] = next_queue[i + threadIdx.x];
}
}
__syncthreads();
queue_size = 0;
__syncthreads(Q);
}

Figure 14: Vertex-centric Implementation with Frontier and Hierarchical Queue

2017/6/11

__global__ void kernel_cuda_frontier(int *queue, ...) {
/* Process elements in queue */

| ¥

| 3

5| __global__ void kernel_cuda_frontier_scan(int *prefix_sum, ...) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;
for (int v = 0; v < ceil_num_vertices; v += num_threads) {
int vertex = v + tid;
if (vertex < num_vertices) {
if (updated[vertex]) visited[vertex] = true;
prefix_sum[vertex] = frontier[vertex] = updated[vertex];
updated[vertex] = false;
}
else if (vertex < ceil_num_vertices) {
frontier[vertex] = false;
prefix_sum[vertex] = 0;
}
}

}

__global__ void kernel_cuda_combined_sweeps(int *g_odata, int *g_idata, int n) {
__shared__ int temp[1024]; // Determines max. size of frontier (#vertices)
int thid = threadIdx.x;
int offset = 1;
temp [2%thid] = g_idata[2*thid];
temp [2#thid+1] = g_idata[2*thid+1];
for (int d =n > 1; d > 0; d >>=1) {

__syncthreads();
if (thid < d) {
int ai = offset*(2*thid+1)-1;
int bi = offset*(2*xthid+2)-1;
temp[bi] += templ[ail;
}
offset *= 2;
}
if (thid == 0) temp[n - 1] = 0; // clear the last element
for (int d = 1; d < n; d *= 2) { // traverse down tree & build scan
offset >>= 1;
__syncthreads();
if (thid < d) {
int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
int t = templail;
templail = templ[bil;
temp[bi] += t;
}
}
__syncthreads();
g_odata[2*thid] = temp[2*thid];
g_odata[2*thid+1] = temp[2*thid+1];
__global__ void kernel_cuda_generate_queue(
int *prefix_sum, bool *frontier, int *queue, int num_vertices) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < num_vertices && frontier[tid]) queue[prefix_sum[tid] + 1] = tid;
// Set size of queue
if (tid == num_vertices - 1) queue[0] = prefix_sum[tid] + (int) frontier[tid];
}

Figure 15: Vertex-centric Implementation with Frontier and Prefix Sum (only shared memory)

13

2017/6/11

__global__ void kernel_cuda_per_edge_basic(
int *v_adj_from, int *v_adj_to, int num_edges, int *result, bool *still_running)

1<

int tid = blockIdx.x * blockDim.x + threadIldx.x;
int num_threads = blockDim.x * gridDim.x;

for (int e = 0; e < num_edges; e += num_threads)
{

int edge = e + tid;

if (edge < num_edges)
{
int to_vertex = v_adj_to[edge];
int new_len = result[v_adj_from[edgel] + 1;

if (new_len < result[to_vertex])
{
result[to_vertex] = new_len;
*still_running = true;

Figure 16: Unoptimized Edge-centric Implementation

__global__ void kernel_cuda_per_edge_frontier_numbers(int iteration, ...)

{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;

for (int e = 0; e < num_edges; e += num_threads)
{

int edge = e + tid;

if (edge < num_edges)

{
int from_vertex = v_adj_from[edge];
int to_vertex = v_adj_tol[edgel;

if (result[from_vertex] == iteration && result[to_vertex] == MAX_DIST)
{

result[to_vertex] = iteration + 1;

*still_running = true;

Figure 17: Edge-centric Implementation with Frontier and Iteration Counter

14 2017/6/11

