
Programming Language Design Matthias Springer, 15D54036 1

Abstract

In this work, we present examples for metaprogramming using thisContext and mixins and their
implementation in Squeak/Pharo, both of which are dialects of Smalltalk.

1 Reflection and Metaprogramming in Smalltalk
Metaprogramming is a program’s ability to reason about itself. In an abstract sense, this means that programs
can be treated as ordinary data and, therefore, be analyzed and changed at runtime. In this section, we show
an example for Smalltalk’s thisContext, which is a mechanism to control the bytecode interpreter.

1.1 Stack Machine Model

Smalltalk source code is compiled to bytecode by a compiler written in Smalltalk itself. The bytecode is then
executed by a virtual machine. Smalltalk’s bytecode follows the stack machine model. When a message send
should be performed, the compiler generates bytecode that pushes the receiver and all arguments onto the
stack, followed by a send: instruction with the selector.

1.2 Accessing Stack Frames

Smalltalk provides a special keyword thisContext evaluating to an object representing the current stack
frame. That object has methods for accessing and modifying stack variables (e.g., local variables), modifying
the program counter and jumping to an arbitrary address within the executing method, and accessing the
sender’s stack frame. thisContext is an instance of class MethodContext which lets programmers effectively
control the bytecode interpreter within the guest language. The compiler translates thisContext to a bytecode
instruction that generates an instance of MethodContext and pushes it onto the stack.

Protocol The following list gives an overview of some interesting methods provided by MethodContext1.

• jump:: Modifies the program counter to perform a relative jump in the bytecode of the current method.

• method: Returns the CompiledMethod object of the executing method. This object contains meta infor-
mation about the method and its bytecode.

• tempAt:: Accesses a temporary variable of this stack frame using its index.

• tempAt:put:: Sets a temporary variable of this stack frame using its index.

• pc: Returns the current program counter, an index into the bytecode of the method of this stack frame.

• pc:: Sets the current program counter.

• push:: Pushes a value onto the stack, effectively increasing the size of this stack frame.

• receiver: Returns the receiver of this stack frame.

• return:: Causes the current stack frame to return with a certain value.

• sender: Returns the stack frame below this frame.

• swapReceiver:: Sets the receiver of this stack frame.
1Some methods are stored in a superclass of MethodContext, but we only mention MethodContext in this work.

Programming Language Design Matthias Springer, 15D54036 2

Optimizations In the presence of a just-in-time compiler, a virtual machine might never generate a MethodContext
object unless the programmer uses thisContext. Some of the methods shown below first try to use a primitive
in the virtual machine (for performance reasons) and execute the shown code only as a fallback, in case the
virtual machine does not provide an implementation for the primitive. Nevertheless, the programmer can
change these methods at any time to force that the Smalltalk code is executed instead of the implementation
in the virtual machine.

1.3 Example: Exceptions Implemented in the Guest Language

The mechanism for traversing the method stack and controlling the bytecode interpreter can be used to
implement exception handling in the guest language, such that the underlying virtual machine does not have
to be aware of that mechanism. The benefit of this implementation approach is that more functionality
can be implemented in high-level Smalltalk code, resulting in a smaller virtual machine. This is not only a
cleaner approch with respect to architectural design2, but also us to use the guest language as a playground
for new language features, since it is no longer necessary to recompile the virtual machine or to even restart
the running Smalltalk system for a language modification to take effect.

Exception Handling Exceptions are raised in Smalltalk by sending the message signal to an exception
object. An exception is caught by the first exception handler contained in a stack frame. The message on:do:
can be sent to a block closure containing the code throwing an exception with the type of exception and an
exception handler block as arguments.

1 HttpRequest»titechWebsiteContent

2 [↑ self httpGet: ’http://www.titech.ac.jp/’]

3 on: Exception

4 do: [:e | ↑ ’Unable to send HTTP GET request’]

5

6 HttpRequest»httpGet: aURL

7 "..."

8 timedOut ifTrue: [Exception new signal].

9 "..."

If we run the execute titechWebsiteContent in the previous code snippet and the network host cannot be
reached, httpGet: will signal (throw) an exception which will be handled by the exception handler block in
the first method.

Implementation of Exception Handling This paragraph describes the implementation of exception handling
in Squeak/Smalltalk using thisContext. The following source code snippets are taken from a Squeak 5.0
image and simplified. A number of subtle details are omitted such as checking if an exception handler should
handle a certain type of exception.

The method Exception»signal uses the method nestHandlerContext to find a stack frame with an excep-
tion handler. To detect such a stack frame, the method on:do: starts with a primitive call. That primitive is
not implemented in the virtual machine, i.e., when that method is executed, the primitive fails immediately
and the code after the primitive statement is executed. The primitive only acts as a method marker (annota-
tion). Note that in method signal the keyword thisContext refers to the stack frame executing the signal

method. There is a stack frame calling that method on the stack below that frame, and we assume that there
is also a stack frame containing an exception handler somewhere below that frame.

1 Exception»signal

2In the best case, we would like to have all functionality implemented in the guest language itself.

Programming Language Design Matthias Springer, 15D54036 3

2 "Ask ContextHandlers in the sender chain to handle this signal. The default is to execute

and return my defaultAction."

3 ↑ thisContext nextHandlerContext handleSignal: self

4

5 BlockClosure»on: exception do: handlerAction

6 "Evaluate the receiver in the scope of an exception handler."

7 <primitive: 199> "just a marker, fail and execute the following"

8 ↑ self value

The method nextHandlerContext finds the next stack frame containing an exception handler by iterat-
ing through all stack frames until one stack frame is marked, i.e., it contains a primitive call with num-
ber 199. A different approach could check if the method of a stack frame is the compiled method object
BlockClosure»on:do:, but checking the primitive number might be more efficient.

1 MethodContext»nextHandlerContext

2 "Return the next handler marked context, returning nil if there is none. Search starts with

self and proceeds up to nil."

3 | ctx |

4 ctx := self.

5 [ctx isHandlerContext ifTrue:[↑ ctx].

6 (ctx := ctx sender) == nil] whileFalse.

7 ↑ nil

8

9 MethodContext»isHandlerContext

10 "Is this a context for a method that is marked?"

11 ↑ method primitive = 199

Once a stack frame handling exceptions was found, the handler must be executed and the method contain-
ing the handler must return. Notice that the return: message send in the following source code snippet is not
a regular method return statement but a method defined on class MethodContext. It causes that method to
return with a certain result, regardless of where the program counter points to. This automatically terminates
all stack frames on top of that frame. The method tempAt: is used to retrieve the second temporary variable,
which is the second argument to on:do: (exception handler block). The method cull: tries to execute the
exception handler block with the exception object as argument or without any arguments in case the block
does not take any arguments.

1 MethodContext»handleSignal: exception

2 self return: ((self tempAt: 2) cull: exception)

Implementation without Metaprogramming Exception handling is typically implemented in the virtual ma-
chine/interpreter. Stack frames can be marked as exception handlers by setting a flag similarly to the primitive
call in the example above. Raising an exception translates to a primitive call or a special bytecode instruction,
upon which the virtual machine traverses the stack of method frames until it finds one that is marked. This
mechanism is very similar to the mechanism described above. Smalltalk is special in a sense that stack frames
are guest language object and accessible and modifyable in the guest language.

It is not obvious how to implement exception handling in the guest language without using metaprogram-
ming. One very tedious approach would have every method return a tuple of the actual return value and an
optional exception object. As soon as a method call returns, the sender first checks if the tuple contains an
exception object and, if so, returns immediately with that exception object as well. Otherwise, it proceeds
with proceeds with the execution, possibly using the actual return value of the called method. This mecha-
nism requires modifying every return statement and every method call, but it might be possible to do this
transformation automatically using macros.

Programming Language Design Matthias Springer, 15D54036 4

2 Mixins in Smalltalk
A mixin is an abstract subclass that can be applied to multiple (super)classes. Mixins are typically used to
share methods that are common to multiple classes, such that the source code does not have to be duplicated.
Most Smalltalk dialects do not support mixins out of the box3, but it is easy to implement rudimentary mixin
functionality in Squeak. The last part of this section describes how to do that.

2.1 Protocol

Classes are defined in Squeak using a message send to the superclass. The following snippet defines a subclass
of Object.

1 Object subclass: #NewClass

2 instanceVariableNames: ’foo bar’

3 classVariableNames: ’qux’

The following listing shows how to apply three mixins during class definition. A mixin is an ordinary class
but not meant to be instantiated.

1 Object subclass: #NewClass

2 instanceVariableNames: ’foo bar’

3 classVariableNames: ’qux’

4 mixins: { Mixin1. Mixin2. Mixin3 }

2.2 Example: Comparable Mixin

In this example, we assume that an application needs two classes Time and Money. Since our application
should be deployed in an international environment, class Time must be aware of time zones and class Money
should support multiple currencies. For that reason, we do not want to use temporal and numeric classes
provided by the execution environment.

The following listing shows how these two classes are defined.

1 Object subclass: #Time

2 instanceVariableNames: ’hour minute second timeZone’

3 classVariableNames: ”.

4

5 Object subclass: #Money

6 instanceVariableNames: ’amount currency’

7 classVariableNames: ”.

A frequent operation in our application involves comparing instances of Time and instances of Money.
Therefore, both classes should understand the methods <, <=, >, >=, =, and (inequality). We first present an
implementation without mixins and then an implementation with mixins.

Without Mixins The following source code snippest shows how to implement Time without mixins. Time

has a method gmtTime which returns the time in seconds according to the GMT time zone. Methods for
comparing two Time instances compare this value.

1 Time»gmtTime

2 ↑ (self hour * 3600 + self minute * 60 + self second - self timeZone gmtDifference * 3600) ←↩
\\ 86400

3Newspeak is similar to Smalltalk and supports Mixins.

Programming Language Design Matthias Springer, 15D54036 5

3

4 Time»< other

5 ↑ self gmtTime < other gmtTime

6

7 Time»<= other

8 ↑ self gmtTime <= other gmtTime

9

10 Time»> other

11 ↑ self gmtTime > other gmtTime

12

13 Time»>= other

14 ↑ self gmtTime >= other gmtTime

15

16 Time»= other

17 ↑ self gmtTime = other gmtTime

18

19 Time»∼ other

20 ↑ self gmtTime ~ other gmtTime

The following source code snippest shows how to implement Money without mixins. Money has a method
toUSD which returns the amount in US dollars according to current exchange rate. Methods for comparing
two Money instances compare this value. Note that methods for comparing instances are similar in Time and
Money. In the next paragraph, we will get rid of this code duplication using mixins.

1 Money»toUSD

2 ↑ self amount * (WebRequest queryRate: self currency to: ’USD’).

3

4 Money»< other

5 ↑ self toUSD < other toUSD

6

7 Money»<= other

8 ↑ self toUSD <= other toUSD

9

10 Money»> other

11 ↑ self toUSD > other toUSD

12

13 Money»>= other

14 ↑ self toUSD >= other toUSD

15

16 Money»= other

17 ↑ self toUSD = other toUSD

18

19 Money»∼ other

20 ↑ self toUSD ~ other toUSD

With Mixins We first define a mixin Comparable providing methods for comparing instances of any kind of
class, given that the class provides implementations for = and >. Based on these two methods, the remaining
for methods can be implemented as follows.

1 Object subclass: #Comparable

2 instanceVariableNames: ”

Programming Language Design Matthias Springer, 15D54036 6

3 classVariableNames: ”.

4

5 Comparable»= other

6 self subclassResponsibility.

7

8 Comparable»> other

9 self subclassResponsibility.

10

11 Comparable»< other

12 ↑ (self = other | (self > other)) not

13

14 Comparable»<= other

15 ↑ (self > other) not

16

17 Comparable»>= other

18 ↑ self = other | (self > other)

19

20 Comparable»∼ other

21 ↑ (self = other) not

We now define Time and Money as subclasses of Object with the mixin Comparable. This means that these
classes are subclasses of a mixin application of Comparable, which is a subclass of Object. Notice that we
only have to implement the methods > and = along with the converter methods toUSD and gmtTime, removing
the code duplication partly.

1 Object subclass: #Time

2 instanceVariableNames: ’hour minute second timeZone’

3 classVariableNames: ”

4 mixins: { Comparable }.

5

6 Object subclass: #Money

7 instanceVariableNames: ’amount currency’

8 classVariableNames: ”

9 mixins: { Comparable }.

10

11 Time»> other

12 ↑ self gmtTime > other gmtTime

13

14 Time»= other

15 ↑ self gmtTime = other gmtTime

16

17 Money»> other

18 ↑ self toUSD > other toUSD

19

20 Money»= other

21 ↑ self toUSD = other toUSD

Programming Language Design Matthias Springer, 15D54036 7

2.3 Implementation of Mixins

The following listing describes how mixins can be implemented in Squeak using metaprogramming. We
provide a new method that takes an additional collection of mixins during subclassing. For every mixin, the
algorithm generates a new subclass with the instance/class variables of the mixin and adds the methods of
the mixin to that subclass. This is possible because Smalltalk allows generating new classes and adding new
methods from source code while a program is running. Class-side methods and instance variables are added
to the meta class object, which can be obtained by sending the message class to the class object4.

1 Class class»subclass: name instanceVariableNames: instVarNames classVariableNames: classVars

mixins: mixinClasses

2 | result |

3 result := self

4 mixinClasses withIndexDo: [:cls :idx |

5 result := result subclass: name, ’_’, idx asString

6 instanceVariableNames: cls instVarNames

7 classVariableNames: cls classVarNames.

8 cls methodDict do: [:sel :meth | result compile: meth getSource].

9 cls class methodDict do: [:sel :meth | result class compile: meth getSource]].

10 ↑ result subclass: name

11 instanceVariableNames: instVarNames

12 classVariableNames: classVars

4For that reason we write Classname class»methodName to denote class-side methods.

