
Exploring JRuby, Truffle and Graal
Virtual Machines and Execution Environments, WS2014/15

Jan Graichen, Fabio Niephaus, Matthias Springer, Malte Swart

Hasso Plattner Institute, Software Architecture Group

February 5, 2015

Exploring JRuby, Truffle and Graal

Overview

Recap

Truffle & Graal in Action

Truffle in Practice

Challenge: Optimize Keyword Arguments in JRuby

Summary

References

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 2 / 29

Exploring JRuby, Truffle and Graal I Recap

Recap: What is Truffle & Graal?

• Truffle and Graal is a tool chain to build fast VMs easily
− Similar to RPython

• Truffle is an AST interpreter framework
• Graal is modified JVM

− Comes with an aggressive JIT compiler written in Java
− Profiles code and detects hot methods
− Truffle can use these information for making assumptions
− Compiles specified code segment into machine code

• Truffle uses node replacements for specific optimizations (like type
specific actions)

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 3 / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

Overview

Recap

Truffle & Graal in Action

Truffle in Practice

Challenge: Optimize Keyword Arguments in JRuby

Summary

References

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 4 / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

Demo

def multiply(a, b)

a * b

end

100 _000.times.each do |times|

start = Time.now

(1..1 _000_000).each do |i|

multiply(1, 2)

end

end_time = Time.now

puts "Time elapsed #{(end_time - start)*1000} ms"

end

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 5 / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

Example Runtimes
Empirical Figures

1. MRI: 175ms

2. JRuby: 80ms

3. JRuby + Truffle: 720ms

4. JRuby + Graal: 180ms and then 70ms

5. JRuby + Truffle + Graal: 1.5ms

Warm-Up Time

Truffle and Graal end with a very low execution time per iteration, but has
large boot up time
→ Only faster if there is a large number of iterations/long overall
execution time

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 6 / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

Graal VM - System Architecture

Graal
VM

Graal
Compiler

1
2
3
4

...

Compilation
Queue

Graph
Cache

install code

insert / updatetake

put

get

check / invalidate

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 7 / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

Handout only: Graal VM - Details

1. Graal VM detects hot methods

2. Graal VM adds these methods to compilation queue

3. Compiler threads compile methods with highest priorities

4. Machine code is installed into runtime’s cache

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 7E / 29

Exploring JRuby, Truffle and Graal I Truffle & Graal in Action

JRuby, Truffle and Graal: Overview of Threads

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 8 / 29

Exploring JRuby, Truffle and Graal I Truffle in Practice

Overview

Recap

Truffle & Graal in Action

Truffle in Practice

Challenge: Optimize Keyword Arguments in JRuby

Summary

References

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 9 / 29

Exploring JRuby, Truffle and Graal I Truffle in Practice

Ways to use Truffle within an existing AST Interpreter

Convert to Truffle: Translate all AST nodes to Truffle nodes

Add-On Truffle: Add an additional set of AST nodes

Ruby Source Code JRuby AST
Modified
MRI Parser

JRuby Truffle AST
Translator
Visitor

Intermediate
Representation

Native Code

Truffle
Compiler

Graal Compiler

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 10 / 29

Exploring JRuby, Truffle and Graal I Truffle in Practice

Method Call Nodes in (J)Ruby

: RubyCallNode

arguments : RubyNode[]

10 : FixnumLiteralNode {c: 40, e: 30} :
HashLiteralNode

receiver blockmethodName

• RubyCallNode contains:
− Receiver object
− Method name (fix)
− List of argument AST nodes
− Block AST node

• Dynamic call → Dynamic dispatch is run on every execution

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 11 / 29

Exploring JRuby, Truffle and Graal I Truffle in Practice

Method Callee Node in (J)Ruby

1. RubyRootNode

2. Catch*Nodes (CatchNextNode, CatchRetryAsErrorNode, CatchReturnNode . . .)

3. SequenceNode

3.1 CheckArityNode

3.2 WriteLocalVariableNode for argument 1
3.3 WriteLocalVariableNode for argument 2
3.4 WriteLocalVariableNode for kwargument e
3.5 WriteLocalVariableNode for kwargument c
3.6 Statement sequence itself (wrapped in TracingNodes, with

CyclicAssumptions)

Nice: Every argument has a node to create its default argument, maybe a
node that throws every time a exception

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 12 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby

Overview

Recap

Truffle & Graal in Action

Truffle in Practice

Challenge: Optimize Keyword Arguments in JRuby
Problem
Solution

Summary

References

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 13 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby

Task: Keyword Arguments in Ruby 2.x

• Shortcut to call method with dictionary as last argument:

method (10, e: 30, c: 40)

method (10, {:e => 30, :c => 40})

• Starting with Ruby 2.0, Ruby can process this dictionary
automatically (so called keyword arguments):

def method(a, b=3, e:, c:30)

end

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 14 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Problem

Performance Bottlenecks

• Hash object creation: object is created, passed as argument, then
destructed again

• Inefficient code paths (e.g., multiple scans of Hash object)

• Code involving Hash objects is harder to optimize than code involving
primitive objects (Graal optimizations)

• Keyword argument nodes are not optimized by Truffle (Java equals,
Truffle boundary for Hash iterator)

• Execution remains in interpreter modus

Goal: Pass keyword arguments as normal arguments

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 15 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Optimizations

1. Optimize implementations (efficient hash operations)

2. Store kwargs within normal arguments array, separated by marker

3. Cache kwargs mapping within dispatch chain

→ We will now look into optimization #3

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 16 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Fully Optimized Keyword Arguments
Callee’s Point of View

• VirtualFrame contains arguments array.

• Array contains Marker object, generated by MarkerNode as last element,
if call is optimized.

• CachedBoxedDispatchNode is always optimized if keyword arguments are
present (rewriting of argumentNodes array).

• ReadKeywordArgumentNode has offset (from right side) into arguments array
as instance variable.

• ReadKeywordArgumentNode accesses arguments array at offset if call is
optimized, otherwise expects a RubyHash (old behavior).

• CachedBoxedDispatchNode might generate an additional RubyHash if rest
keyword arguments are present.

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 16E / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Fully Optimized Keyword Arguments
Example

class Cls1

def method(a:, ** kwargs)

end

end

class Cls2

def method(a:, b:)

end

end

[Cls1.new , Cls2.new].each do |obj|

obj.method(a: 1, b: 2)

end

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 17 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Recap: Type Decision Chains
Source: “Self-Optimizing AST Interpreters”

Uninitialized Type=#1

Uninitialized

Type=#1

Uninitialized

Type=#2 Type=#2

Uninitialized

Type=#3

Type=#1 Generic

Figure 6. Transformations of the AST for a polymorphic operation.

of the AST. If the number of different types exceeds a certain limit,
we declare the call site megamorphic and replace the decision chain
with a generic implementation of the operation. Alternately, we can
choose to place the generic node at the end of the chain if it is still
beneficial to have the specialized versions for the current types in
the chain. Finally, at any point in time we can try to re-profile the
chain by replacing it with an uninitialized node again.

Decision chains can potentially form trees. This is beneficial if
the operation performed for a specific type again needs a polymor-
phic dispatch. Currently, we use this for efficient implementation
of JavaScript’s prototype mechanism. Here, the type of the value
decides whether the prototype must be accessed for a specific prop-
erty or not. In case the prototype must be accessed, there is an ad-
ditional decision chain for different prototype types.

5. Dynamic Data Type Specialization
The main performance problem of the system described so far is
the boxing necessary to allow one value to hold both primitive
values as well as references. A common solution to this problem
is to use value tagging. We present here an alternative approach
that we believe is better in terms of performance and simplicity.

5.1 Boxing
Java VMs, and most VMs in general, differentiate between prim-
itive types and reference types. Primitive types directly represent
values of varying ranges (integers, doubles, etc.), while reference
types are pointers to data structures within the application’s heap.
The differentiation between primitive and reference types is impor-
tant for the safety and soundness of the system (no pointer arith-
metic), and only reference types need to be visible to garbage col-
lection.

In the Java language, the static type of each value defines
whether it is of primitive or reference type, so that the storage type
is known beforehand. In JavaScript, however, the type of a value is
not known beforehand, so that the system needs to be prepared to
process both primitive and reference types.

The most common solution is to allocate storage of reference
type, and whenever a primitive value needs to be stored it is
wrapped into a small boxing object. This boxing object has ex-
actly one field of the primitive type and is used as a proxy that
allows the primitive value to be stored in a reference storage.

5.2 Tagging
Boxing imposes considerable overhead, because a new boxing ob-
ject is created each time a primitive value needs to be stored. To
avoid this, VMs sometimes employ tagging, which uses a bit-level
flag to tell if a stored machine word is a primitive or a reference
value. While this allows the system to store primitive values with-
out boxing them, this has several disadvantages:

• While the least significant bit of object references is not needed
when objects are aligned, the primitive types do not contain
unneeded bits that can be used for object tagging.

• Each time a value is loaded, the system needs to check whether
it is a primitive or reference value and remove the flag bits.

• Each time a value is stored, the system needs to set the accord-
ing flag bits.

5.3 Return Type Specialization
The return value of the execute method is declared as being
an arbitrary Java Object value (see Figure 2). The result of any
node has to be boxed even when the node (e.g., an integer add
node) knows that it can only produce integer values. We want
to avoid that and therefore introduce specialized execute methods
(e.g., executeInt) as shown in Figure 7. The semantics of those
methods are defined in the following way. The caller specifies the
primitive type that it desires to get from the callee. If the callee
can deliver its result value in that form, it simply returns. If the
callee cannot deliver its result value in that form, it throws an
UnexpectedResultException containing the boxed version of
the result. The caller is forced to handle such an exception and act
appropriately, e.g., rewrite itself to a version that can handle this
type of result.

abstract class Node {
public abstract Object execute(Frame f);
public abstract int executeInt(Frame f)

throws UnexpectedResultException;
public abstract double executeDouble(Frame f)

throws UnexpectedResultException;
// ...

}

Figure 7. Return type specialized execute methods.

Figure 8 shows how a specialized node such as a JavaScript
integer add is programmed against this modified framework. The
operation expects that both of its inputs return their values as
integers. If one of them fails, the node rewrites itself and propagates
the unexpected result exception to its caller. The code shown in the
figure may seem complex, but in the normal case, the catch blocks
are never executed. The actual operations performed are getting the
values from the left and right operand and performing an integer
addition. There is no boxing, no unboxing, and also no type check
involved. In the normal execution path, the inputs are guaranteed to
be of the appropriate type.

Note that even if one of the calls to executeInt throws an
UnexpectedResultException, the associated node has already
been evaluated. This implies that any side effects have already
occurred and the node that replaces the IntegerAddNode needs

76

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 18 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Fully Optimized Keyword Arguments
(Example)
Type Decision Chain

RubyCallCls1Node RubyCallCls2Node RubyCallUninitializedNode
next next

...

1 : FixnumLiteralNode

HashLiteralNode

"b" : StringLiteralNode

2 : FixnumLiteralNode

1 : FixnumLiteralNode

2 : FixnumLiteralNode

• Node specialization for every method (for every receiver type)

• Specialized nodes do not construct Hash nodes only to read arguments
from them

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 18E / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Fully Optimized Keyword Arguments
(Example)
Generic Case

RubyCallGenericNode

"a" : StringLiteralNode

1 : FixnumLiteralNode 2 : FixnumLiteralNode

HashLiteralNode

"b" : StringLiteralNode

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 18E / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Fully Optimized Keyword Arguments
Problems

• Nodes are specific with regard to user-defined Ruby classes
(cannot use Truffle DSL)

• Truffle DSL supports only specialization for language types

• Type of receiver is not known before dispatching the call

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 19 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Polymorphic Inline Caching in Truffle

• Supported by Truffle via type decision chains for types that are known
at guest language implementation compile time

• Not supported by Truffle for types defined in guest language

@TypeSystem ({

boolean.class ,

byte.class ,

int.class ,

long.class ,

float.class ,

String.class ,

RubyBignum.class ,

RubyArray.class ,

RubyHash.class ,

RubyModule.class , ... })

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 20 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Guest Language PIC in JRuby

RubyCallNode

RubyNode[] CallDispatchHeadNode

DispatchNode

UnresolvedDispatchNode UncachedDispatchNode CachedDispatchNode

first

arguments

next

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 21 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Guest Language PIC in JRuby

• UnresolvedDispatchNode: corresponds to Truffle’s unspecified node

• UncachedDispatchNode: corresponds to Truffle’s generic node

• CachedDispatchNode: corresponds to Truffle’s specialized nodes

• Node rewriting similar to Truffle but without Truffle

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 21E / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Argument Passing in DispatchNode

RubyCallNode

RubyNode[]

CallDispatchHeadNode

DispatchNode

UnresolvedDispatchNode UncachedDispatchNode CachedDispatchNode

firstarguments

next

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 22 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Argument Passing in DispatchNode

• Unmodified arguments array (possible with HashLiteralNode) is stored in
UnresolvedDispatchNode

• CachedDispatchNode contains keyword arguments mentioned in signature
in array, and other keyword arguments in HashLiteralNode

• ReadKeywordArgumentNode checks if method dispatch is optimized (marker
present in arguments array) and reads keyword arguments from
arguments array, otherwise extracts them from Hash (same as before)

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 22E / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Evaluation

Results

Keyword arguments are as fast as position arguments
(for specific but common cases)

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 23 / 29

Exploring JRuby, Truffle and Graal I Challenge: Optimize Keyword Arguments in JRuby I Solution

Handout only: Evaluation

→ Keyword arguments are as fast as position arguments

• Optimization affects only arguments passed in keyword argument
syntax in method calls

• Optimization does not affect keyword arguments passed as an already
existing Hash

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 23E / 29

Exploring JRuby, Truffle and Graal I Summary

Overview

Recap

Truffle & Graal in Action

Truffle in Practice

Challenge: Optimize Keyword Arguments in JRuby

Summary

References

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 24 / 29

Exploring JRuby, Truffle and Graal I Summary

Truffle Summary

• Specific Java code cannot be translated by Graal (or it is disallowed)

• Large AST interpreters can still get unclear/distracting, knowledge is
the composition of nodes, not the nodes itself

• Truffle DSL is not enough for efficient implementation of complex
languages

• It is still needed to write efficient code and node implementations

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 25 / 29

Exploring JRuby, Truffle and Graal I Summary

Truffle and RPython - A Very Subjective Comparison

RPython • Lightweight stack
• A little bit easier to get to work - mostly getting the

correct libs in the Python path
• Difficult to debug in depth what is happening at

execution

Truffle • Heavy stack (Java, mostly multiple JDK and often
maven . . .)

• If you get it working, you have the full power of
(debugging) Java, even Graal itself

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 26 / 29

Exploring JRuby, Truffle and Graal I References

References

• L. Stadler, G. Duboscq, H. Mössenböck, T. Wurthinger, Compilation
Queuing and Graph Caching for Dynamic Compilers,
http://lafo.ssw.uni-linz.ac.at/papers/2012_VMIL_Graal.pdf

• T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G.
Richards, D. Simon, M. Wolczko. One VM to Rule Them All, 2013,
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_

OneVMToRuleThemAll.pdf

• T. Würthinger, A. Woß, L. Stadler, G. Duboscq, D. Simon, C. Wimmer.
Self-Optimizing AST Interpreters, 2012, http://lafo.ssw.uni-linz.
ac.at/papers/2012_DLS_SelfOptimizingASTInterpreters.pdf

• Graal (http://hg.openjdk.java.net/graal/graal)

• JRuby (https://github.com/jruby/jruby)

• JRuby Developers (especially Chris Seaton)

• JRuby Benchmarks (https://github.com/jruby/bench9000)

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 27 / 29

http://lafo.ssw.uni-linz.ac.at/papers/2012_VMIL_Graal.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2012_DLS_SelfOptimizingASTInterpreters.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2012_DLS_SelfOptimizingASTInterpreters.pdf
http://hg.openjdk.java.net/graal/graal
https://github.com/jruby/jruby
https://github.com/jruby/bench9000

Exploring JRuby, Truffle and Graal

Appendix

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 28 / 29

Exploring JRuby, Truffle and Graal

Store Keyword Arguments in Array
AST: RubyCallNode arguments

arg 1 . . . argn−1 * key 1 value1 key 2 value2 . . . *

• arg i : ith argument (RubyNode)

• *: marker (MarkerNode, executes to singleton Object)

• key i : ith key in Hash (StringLiteralNode)

• value i : ith value in Hash (RubyNode)

Hasso Plattner Institute, Software Architecture Group Exploring JRuby, Truffle and Graal February 5, 2015 29 / 29

	Recap
	Truffle & Graal in Action
	Truffle in Practice
	Challenge: Optimize Keyword Arguments in JRuby
	Problem
	Solution

	Summary
	References
	Appendix

